Exhibit F Engineering Report & Drawings

Job #: 19215.02

ANB Bank c/o Will Cofield Alder Real Estate

Email: wcoffield@aldercos.com

RE: ANB Bank – Carbondale – Engineering Report, SE Job #19215.02

Dear Will,

Sopris Engineering, LLC (SE) has prepared the following report to support a proposed mixed use development in Carbondale, Colorado. The subject site is located north of Main Street, west of Highway 133, and east of Hendrick Drive. The property is adjacent to the Carbondale Marketplace Subdivision and the City Market grocery store and fueling station. The information presented in this report is for a Major Site Plan Review by the Town. The project team is also proposing a re-zone from the obsolete Planned Community Commercial district (PC) to Mixed Use (MU).

Background and Project Summary

The subject property is proposing development of a 2-story mixed use building that fronts Highway 133. The building is made up of an ANB Bank branch on the north side and a mix of office, retail, restaurant, and multi-family residential in the middle and south side of the building. The proposed areas for each use are shown in the table below:

Building Areas	
Level 1 Overall	13,799 GFA
Level 2 Overall	13,463 GFA
Total	27,262 GFA*
Possible Retail	4,691 GFA
Possible Restaurant	2,246 GFA
Bank	3,269 GFA
Office (Level 1 Common)	823 GFA
Office (Level 2 Common)	1040 GFA
Office (Level 2 Shell)	2,216 GFA
Multi-Family (Level 1)	2,769 GFA
Multi-Family (Level 2)	10,207 GFA
Total	27,262 GFA*

The site also includes associated parking, landscaping, utility improvements, and stormwater management infrastructure. Parking is proposed to be located generally west of and behind the building. Access to the site is proposed off of Hendrick Drive in two locations to allow vehicle circulation including emergency vehicle access to the entire site. The re-zoning requirements have been included with the Town Application.

Public improvements to serve and support development of the site including utilities, vehicle access, and pedestrian access have been previously constructed. Development of the subject site will include additional public improvements that generally include sidewalk, street trees, landscaping, and modifications to Hendrick Drive for the accesses into the site. The public improvements are proposed to be further described and outlined in a Development Improvements Agreement (DIA) as part of the Town process. An Engineer's cost estimate for public improvements will be prepared after site plan approval is received.

Existing Conditions

The existing site is approximately 1.440 acres and has historically been vacant land. Soils general consist of a small layer of topsoil (± 6 ") with a larger layer of gravel/sand/cobbles (essentially pitrun type material) beneath. The grade of the site generally sits higher than the road elevations that border the site. Public improvements including vehicle access to the site off Highway 133 and Main Street via Hendrick Drive, utility stubs including water, sewer, and shallow utilities, and pedestrian access have been extended to the site to serve and support future development. Gas is available from an existing line that runs parallel to the west side of Highway 133. Irrigation water for the site and the public improvements will be provided from the Town's potable system.

Hendrick Drive borders the site on the west and north. The Carbondale Marketplace Subdivision, which includes the City Market grocery store and fueling station, is located west and north of Hendrick Drive. Highway 133 borders the east boundary. A property owned by James H Luttrell Revocable Trust and Loev borders the south boundary.

Vehicle Access and Traffic Review

Vehicles will access the subject site generally from Highway 133 and Hendrick Drive. Most vehicles coming from the north will use the Hendrick Drive access off Highway 133 and continue westbound and then southbound. Vehicles coming from the south will be able to turn westbound onto Main Street at the roundabout and then turn northbound on Hendrick Drive or they could continue to the Hendrick Drive access off Highway 133. Emergency access to the site will be from the same routes.

SE has reached out to the fire department about emergency vehicle access to the site. The fire department has agreed that they have adequate access and can back their trucks directly onto Hendrick Drive if necessary.

A traffic study has been prepared by Kimley-Horn for this project that reviews the traffic generation as well as Highway 133 access permit revisions. A right turn acceleration lane at the Hendrick Drive and Highway 133 intersection is required which is further described in the traffic report. The study is attached for reference. A new highway access permit is also required. The permit is for the Hendrick Drive and Highway 133 access. The new permit will be in the Town's name.

Drainage

A separate drainage study has been prepared by SE for this project which addresses the Town requirements for stormwater drainage and management. The conclusions of the study suggest that no adverse impacts to the subject property or surrounding properties will result from the proposed development. The intent of the proposed grading and stormwater management for the project is to route stormwater over hard surfaces and landscaped surfaces to curb inlets and area drains. Drainage on the building roofs will be collected in roof drains. Once in the roof drains and inlets, the stormwater drainage will be carried through storm pipes to stormwater infrastructure. Four drywells are proposed on the site to handle the onsite detention requirements of the development. The system has been designed to retain the entire 100-year, 1-hour storm event in the storm infrastructure. SE's drainage study is attached for more details.

Construction Erosion Control

Temporary erosion control will be addressed in the Building Permit submittals. A state stormwater permit for erosion control will be necessary because the total disturbance area is more than 1.0 acre. The site will utilize erosion control which includes best management practices such as silt fence, log wattles, and truck tracking control onsite.

Utilities

Domestic Water System

The subject site falls within the Town of Carbondale's water service area. An 8" DIP water main exists under Hendrick Drive to the west of the site and two separate 6" DIP water services are stubbed off the main to serve the subject site. Both of the existing services are planned to be extended to the building.

Three fire hydrants exist that will serve the subject site. One is located in the small landscape island just south of the fueling station on the north side of Hendrick Drive. One is located in the landscape island directly west of the proposed building on the west side of Hendrick Drive at the southernmost access to the grocery store parking lot. And one is located in the landscape area between the sidewalk and the parallel parking just north of the Hendrick Drive access into the Main Street Marketplace development. SE has reached out to the fire department and received authorization that these three fire hydrants are sufficient to serve development on the subject site. All water improvements will be in compliance with the Town's rules, regulations, and specifications. See utility design drawings for more details.

Sanitary Sewer System

The subject site falls within the Town of Carbondale's sanitary sewer service area. A sewer main stub exists on the subject site directly west of the proposed building. The sewer main gravity feeds to the west across Hendrick Drive and across the Carbondale Marketplace Subdivision. It is proposed to extend the existing sewer main stub to the east and install one sewer manhole. Service lines will extend from the building to the new sewer main. All sewer improvements will be in compliance with the Town's rules, regulations, and specifications. See utility design drawings for more details.

Electric/Telephone/Cable

Comcast, Century Link, Ting Internet, and Xcel Energy utility conduits have been extended to pedestal, vault, and transformer/switch cabinet locations at the southwest corner of the subject property. Services for each of these utilities will be extended from this location to another set of pedestals and a transformer to serve the building. Services will then be extended from the new pedestals and transformer to a shared communications and power mechanical room at the building. All installation will be in accordance with utility company standards. All utility companies have confirmed that service is available to the subject site. See utility drawings for more details.

Natural Gas

Black Hills Energy has a 1 ½" steel gas line in the Highway 133 ROW on the west side of the asphalt path (east side of the proposed building). Gas service is planned to be extended to the building from this line which requires a CDOT utility permit. That process will take place during the building permit design phase. All gas lines will be installed in accordance with the gas company standards. Black Hills Energy has confirmed that service is available to the subject site. See utility design drawings for more details.

EQR Analysis

The following describes analysis prepared by SE for the number of EQRs generated for the development and the resulting water consumption. SE has assumed 350 gal/day per EQR for water use and 300 gal/day per EQR for sewer use. This analysis should not be considered final and the number of EQRs and water usage will be determined by the Town attorney and Town water rights engineer. This analysis is for estimation and information purposes only.

In this analysis, commercial space, retail space, restaurant seats, residential units, irrigated area, and other EQR triggers were tabulated with the corresponding EQRs per the Town code. The proposed development includes:

Building Areas

Level 1 Overall	13,799 GFA
Level 2 Overall	13,463 GFA
Total	27,262 GFA*
Possible Retail	4,691 GFA
Possible Restaurant	2,246 GFA
Bank	3,269 GFA
Office (Level 1 Common)	823 GFA
Office (Level 2 Common)	1040 GFA
Office (Level 2 Shell)	2,216 GFA
Multi-Family (Level 1)	2,769 GFA
Multi-Family (Level 2)	10,207 GFA
Total	27,262 GFA*

Multi Family Units

Total	16 Units
2 Bedroom	04 Units
1 Bedroom	12 Units

Unit Type	Quantity	Unit Area (SF)	Req'd Bulk Storage (CU FT)	Bulk Storage Provided (CU FT)
1 BRDM #1	-1	510	170	194
1 BRDM #2	1	460	153	292
1 BRDM #3	1	452	150	292
1 BRDM #4	1	416	138	292
1 BRDM #5	4	499	166	225
1 BRDM #6	4	479	159	225
2 BRDM #1	2	900	300	317
2 BRDM #2	1	752	250	312
2 BRDM #3	1	1010	336	345
Total	16			

- 4,691 SF of Commercial Retail (assume 2 restrooms)
- 7,348 SF of Commercial Office (includes bank, assume 4 restrooms with a toilet and sink in each)
- 2,246 SF of Restaurant Space (assume 50% dining space and 12 SF/seat or approximately 95 seats)
- 12 x 1-bed units under 550 SF (treat as buffet or studio apartment)
- 4 x 2-bed units under 1,500 SF
- Irrigated Area Onsite ±12,865 SF (0.30 acre)

The Town's EQR table located within the municipal code shows the following EQRs per development type:

- Commercial Retail Space
 - Commercial retail up to 5,000 SF including 2 restrooms 1.00 EQR
- Commercial Office Space
 - Commercial office up to 7,000 SF with 2 restrooms 1.00 EQR
 - o Commercial office additional sink 0.15 EQR/sink
 - Commercial office additional toilet or urinal 0.30 EQR/toilet
 - o 0.14 EQR/1,000 SF over 7,000 SF
- Restaurant Space
 - o First 25 seats 2.0 EQRs, 0.04 EQR for each additional seat
- Multi-family Units
 - Studio with 1 kitchen up to 1,500 SF 0.60 EQR
 - Up to and including 2-bed with 1.5 baths and 1 kitchen up to 1,500 SF 0.80 EQR

- Irrigation by sprinkler or drip system
 - o Commercial or Residential per 100 SF 0.02 EQR

The proposed development will generate the following EQRs per the Town code:

- Commercial Retail Space (4,691 SF) 1.00 EQR
 - Commercial up to 5,000 SF: 1 x 1.00 EQR = 1.00 EQR
- Commercial Office Space (7,348 SF) 1.95 EQRs
 - Commercial office up to 7,000 SF: 1 x 1.00 EQR = 1.00 EQR
 - o Commercial office additional sink: 2 x 0.15 EQR = 0.30 EQR
 - Commercial office additional toilet: 2 x 0.30 EQR = 0.60 EQR
 - Commercial office additional SF over 7,000 SF: 348 SF x 0.14 EQR/1,000 SF = 0.05 EQR
- Restaurant Space (Assume 95 seats) 4.80 EQRs
 - First 25 seats: 1 x 2.00 EQR = 2.00 EQR
 - o 0.04 EQR per additional seats: 70 seats x 0.04 EQR/seat = 2.80 EQRs
- Multi-family Units 10.40 EQRs
 - o 1-bed units: 12 units x 0.60 EQR/unit = 7.20 EQRs
 - o 2-bed units: 4 units x 0.80 EQR/unit = 3.20 EQRs
- Irrigated Area **4.10 EQRs**
 - o Total Irrigated Area: 12,865 SF x 0.02 EQR/100 SF = 2.57 EQRs

Total EQRs proposed for the development for water (including irrigation through the domestic line) equals **22.25 EQRs**. Assuming 350 gal/day per EQR for water, this generates approximately **7,790** gal/day.

Total EQRs proposed for the development for sewer equals **22.25 EQRs**. Assuming 300 gal/day per EQR for sewer, this generates approximately **6,675 gal/day**.

Conclusion:

Based on the proposed layout and design, the existing and proposed access, drainage, traffic, utilities, irrigation, and site improvements have been addressed per the Town of Carbondale requirements for review and submittal.

If you have any questions or need any additional information, please call (970) 704-0311.

Sincerely, SOPRIS ENGINEERING, LLC

Kyle Sanderson, PE Project Manager

Attachments:

- Kimley-Horn Traffic Study
- Drainage Report

DRAINAGE REPORT

FOR

ANB BANK MIXED USE DEVELOPMENT CARBONDALE, CO

Prepared for: Town of Carbondale Major Site Plan Review

Prepared by:

Sopris Engineering, LLC 502 Main Street Suite A3 Carbondale, Colorado 81623

On Behalf of:

ANB BANK - CARBONDALE c/o Will Coffield Alder Real Estate

SE Project Number: 19215.02

December 22, 2022

Purpose of Drainage Study

The purpose of this Drainage Study is to:

- Evaluate the existing & historic drainage conditions and estimate flow rates to compare existing/historic versus post development drainage conditions.
- Estimate 10-year and 100-year post development peak runoff rates in support of sizing of stormwater mitigation infrastructure.
- Ensure the detention and retention systems have adequate capacity such that post development runoff rates do not exceed existing peak runoff rates for the 10-year and 100-year storm events.
- Provide Best Management Practice (BMP) recommendations to minimize sediment transport offsite

General Overview, Site Description, & Existing Conditions

The subject property (site) is located north of Main Street, west of Highway 133, and east of Hendrick Drive. The site is adjacent to the Carbondale Marketplace Subdivision and the City Market grocery store and fueling station. The subject property is proposing development of a 2-story mixed use building that fronts Highway 133. The building is made up of an ANB Bank branch on the north side and a mix of office, retail, restaurant, and multi-family residential in the middle and south side of the building. The site also includes associated parking, landscaping, utility improvements, and stormwater management infrastructure. The site is approximately 1.440 acres.

The existing site has historically been vacant land. The grade of the site generally sits higher than the road elevations that border the site. The existing surface generally grades from south to north. Soils general consist of a small layer of topsoil (± 6 ") with a larger layer of gravel/sand/cobbles (essentially pitrun type material) beneath. The onsite soils consist of Type 'B' Hydrologic Soils, according to the soil survey provided by the National Resource Conservation Service (NRCS). Type 'B' soils are conducive to moderate infiltration rates with moderately well drained soils. The NRCS soils are consistent with the site soils described in the site specific soils report prepared by Kumar and Associates Inc. See attached for NRCS soil survey report on the Hydrologic Soils group.

Public improvements to serve and support development of the site including utilities, vehicle access, and pedestrian access have been previously constructed. Development of the subject site will include additional public improvements that generally include sidewalk, street trees, landscaping, and modifications to Hendrick Drive for the accesses into the site. Landscaping is proposed around the building and in islands around the parking lot and drive aisles. The drainage infrastructure will generally include curb inlets and area inlets that will be piped to four (4) drywell structures. See attached for grading and drainage plans.

The subject property falls within Zone C on FEMA Flood Insurance Rate Map panel number 0802341858 A with a revised date of February 5, 1986. FEMA designates Zone C as minimal risk areas outside the 0.2% (500 year storm) annual chance floodplain. See attached for FEMA map.

Existing Drainage Basins

The existing drainage conditions were analyzed in order to estimate existing peak stormwater flow rates affecting the site and were based on site survey topography and site visits. The existing site conditions are uniform across the entire site and for this analysis, a single basin across the entire site was analyzed for comparison between historic and post development drainage conditions. The resultant basins and drainage calculations are described in greater detail below and are illustrated on civil sheet C-5.0.

Existing Basin 01 (EX-01) is the onsite basin made up of the subject property. The storm water runoff from this basin generally flows from south to north with sheet flow drainage onto the adjacent streets.

The existing drainage basin delineation was used to estimate 10-year and 100-year peak runoff rates for the subject property to determine allowable release rates for the developed site. The hydrologic methods, assumptions, and results are summarized within Table 1 below.

Developed Drainage Basins

The entire overall development area and site improvements for the project were analyzed as a single basin even though some of the site improvements will drain off the site into the adjacent right of ways and not into the storm water mitigation infrastructure. Because some of the developed area will drain into the right of ways and not in the storm infrastructure, the analysis is considered conservative with over detention in the storm infrastructure. The proposed drainage basin is described in more detail below.

<u>Post Development Basin 1 (PR-01)</u> includes the mixed use building, drive aisles, parking spaces, and landscaping around the site. The building roof will have roof drains that will collect flows and be hard piped under the surface to a series of 4 drywells located in the parking and drive aisles. The hardscape and landscape areas will sheet flow on the surface to area drains and curb inlets and then piped to the drywells. Flows on the landscape areas will most likely infiltrate into the soils with larger storm events sheet flowing to the road surface and then to the curb inlets.

The methodology for estimating post development peak runoff rates for the 10-year and 100-yr storm events are discussed further below and the results are summarized within Table 1.

Hydrologic Analysis Methods & Assumptions

Onsite and offsite drainage areas were analyzed using the Rational Method (Equation 1) since the cumulative total of tributary area being studied was less than 90 acres.

Equation 1: Q = C*I*A

Q = Runoff Flow Rate (cfs); C = Runoff Coefficient I = Rainfall Intensity (in/hr); A= Area of Basin (acres)

The runoff coefficient (C) is a variable representing the ratio of runoff to rainfall volumes during a storm event. The determination of C depends on the soil type, watershed imperviousness, and storm event frequency. Each drainage basin was studied to determine the percent of impervious area within the basin. Landscape areas were assumed to be 2% impervious which correlates to 10-year and 100-year runoff coefficients of 0.07 and 0.44, respectively. Hard surfaces including buildings, roofs, concrete, and asphalt were assumed to be 100% impervious or 0.86 and 0.89 for the 10-year and 100-year runoff coefficients, respectively. Each basin's total or effective percent impervious area was used to establish a weighted runoff coefficient. The Mile High Flood District (MHFD) (formerly UDFCD) out of Denver, CO has developed runoff coefficient tables in Chapter 6 of Volume 1 of their Urban Storm Drainage Criteria Manual. Runoff coefficients are based on the amount of runoff and the storm event. Table 6-5 is attached for reference at the end of this report. This table was used to determine the corresponding 10-year and 100-year weighted average runoff coefficients based on a Type B hydrologic soil classification that are found within Table 1.

The design rainfall duration used in the Rational Method is referred to as the time of concentration. The time of concentration is the cumulative travel time, including overland flow and channelized flow, for runoff to get from the furthest point upstream of a basin to a designated design point. A minimum time of concentration of 10 minutes was used for all basins given the size of the basin and the relatively short travel distances. Based on the Town of Carbondale's Intensity Duration Frequency (IDF) Curve, the 10-year and 100-year, 10-minute time of concentration rainfall intensities are 2.68 in/hr and 4.37 in/hr, respectively. The IDF Curve and Tables for Carbondale are attached at the end of this report.

The site has been analyzed for the peak rainfall runoff for storm water system sizing, and also has been analyzed for the 10-year, 1 hour storm event for detention/retention system sizing. A summary of the 10-year and 100-year estimated peak runoff rates analyzed for this project are summarized in Table 1 below:

<u>Table 1: Existing and Post Development Peak Runoff Summary (10-min Storm)</u>

10-YR EXIS	TING PEAR	RUNOFF	SUMMARY	,		100-YR EX. PEAK RUNOFF SUMMARY				
BASIN	%	C ₁₀	I ₁₀	AREA	Q ₁₀	BASIN	C ₁₀₀	I ₁₀₀	AREA	\mathbf{Q}_{100}
I.D.	IMPERV.		(in/hr)	(acres)	(cfs)	I.D.		(in/hr)	(acres)	(cfs)
EX-01	2%	0.07	2.68	1.440	0.270	EX-01	0.44	4.37	1.440	2.769
10-YR DEV	ELOPED PE	AK RUNOI	F SUMMA	RY		100-YR DE	V. PEAK RU	JNOFF SUI	MMARY	
PR-01	81%	0.71	2.68	1.440	2.740	PR-01	0.80	4.37	1.440	5.034
[1] TIME C	F CONCEN	TRATION V	VAS ASSUN	ΛΕD TO BE	EQUAL TO	10 MINUTE	S.			
[2] RATIO	NAL C FACT	ORS ARE B	ASED ON T	THE PERCEN	NT IMPERV	IOUS FROM	/ TABLE 6-5	OF CHAP	TER 6 OF TH	IE UDFCD -
URBAN ST	JRBAN STORM DRAINAGE CRITERIA MANUAL. (MILE HIGH FLOOD DISTRICT)									
[3] RAINF	ALL INTENS	ITY IS FRO	M THE NOA	A 14 IDF C	URVE FOR	CARBOND	ALE, CO			

For detention mitigation onsite, the modified rational method was used. See below for more detail on the site detention mitigation. The detention runoff rates for this project are summarized in Table 2 below.

Table 2: Existing and Post Development Detention Runoff Summary (1-hr storm)

10-YR EXIS	NOFF SUM	IMARY		100-YR EX	. DETENTIO	N RUNOFI	F SUMMAR	RY		
BASIN	%	C ₁₀	I ₁₀	AREA	Q ₁₀	BASIN	C ₁₀₀	I ₁₀₀	AREA	Q ₁₀₀
I.D.	IMPERV.		(in/hr)	(acres)	(cfs)	I.D.		(in/hr)	(acres)	(cfs)
EX-01	2%	0.07	0.777	1.440	0.078	EX-01	0.44	1.19	1.440	0.754
10-YR EXIS	TING DETE	NTION RU	NOFF SUM	IMARY		100-YR EX. DETENTION RUNOFF SUMMARY				
PR-01	81%	0.71	0.777	1.440	0.794	PR-01	0.80	1.19	1.440	1.371
[1] TIME 0	F CONCEN	TRATION V	VAS ASSUN	MED TO BE	EQUALTO	10 MINUTE	S.			
[2] RATIO	NAL C FACT	ORS ARE B	ASED ON 1	THE PERCEN	NT IMPERV	IOUS FROM	/ TABLE 6-5	OF CHAP	TER 6 OF TH	IE UDFCD -
URBAN ST	URBAN STORM DRAINAGE CRITERIA MANUAL. (MILE HIGH FLOOD DISTRICT)									
[3] RAINF	ALL INTENS	ITY IS FROI	M THE NO	AA 14 IDF C	URVE FOR	CARBOND	ALE, CO			

Hydraulic Analysis Methods & Assumptions

Storm water runoff is routed on the surface via sheet flow, then to drainage swales or curb and gutter, and then routed in storm sewer pipes which daylight into drywells. The pipes onsite have been sized according to the design flows. The pipes however may be submerged during larger storm events as the flow backs up in the drywells and underground detention system. The detention systems for the basin are interconnected to distribute and maximize the potential for infiltration. Supporting hydraulic data for all of the calculations have been provided at the end of this report. Each of the gravity storm channels were sized using Manning's Equation (Equation 2).

Equation 2:
$$Q = 1.49/n * R^{2/3} * A * S^{0.5}$$

 $Q = Runoff Flow Rate (cfs); n = Manning's Roughness Coefficient$
 $R = Hydraulic Radius (ft); A = Flow Area (sf), S = Channel Slope (ft/ft)$

The hydraulic capacity calculations have been separated by standard pipe sizes for site storm water drainage with a minimum 2% slope. In general the pipes onsite collect storm water from small subareas within the larger drainage basins. The approximate maximum capacity of each size storm pipe is summarized in Table 3 below.

Table 3: Hydraulic Pipe capacity

Pipe Size (IN)	Pipe Material	Manning's n	Slope	Capacity (CFS)
4	Solid PVC	0.011	2.00%	0.33
6	Solid PVC	0.011	2.00%	1.00
8	Solid PVC	0.011	2.00%	2.18
12	ADS N12	0.011	2.00%	6.40

The terminal storm sewer pipes will utilize 12" smooth wall HDPE pipes. The pipe capacity is greater than the 100-year storm runoff rates, but the added size again provides access for maintenance and reduces the clogging potential.

The final hydraulic capacity calculations will be completed for the building permit submittal. Supporting hydraulic data for all of the calculations has been attached.

Detention Mitigation Analysis & Design

The primary drainage criterion within the Town of Carbondale includes detaining/retaining stormwater runoff onsite such that post development runoff rates exiting the site do not exceed historic levels. Because this site is adjacent and tributary to the Hendrick Drive stormwater system, it was decided to calculate detention volumes for the 10-year, 1-hr storm. Note the shorter duration high intensity storms have higher runoff rates, but the storm water runoff volume is smaller than the longer duration storms. As the storm water system retains storm events up to the 1 hour event, the shorter duration events are also retained. Also note that the storage volume calculations do not account for any infiltration, so the design provides a further conservative analysis.

Table 4 summarizes the 10 year - 1 hour existing and post development peak runoff rates contributing runoff for the entire sitet, and also summarizes the required and provided storage volumes to size the proposed storm water detention infrastructure.

Table 4: Detention Runoff Rates and storage volume:

10 YEAR - 1 HOUR STORAGE SUMMARY								
EX Q ₁₀	DE Q ₁₀	+/- Q	DET. REQ.	+/- DET.	POST DET			
(cfs)	(cfs)	(cfs)	(cf) [1]	PROV. (cf)	Q100 (cfs)			
0.27	2.74	2.47	3,249	3,678	0.00			
[1] REQUIRED DE	11 REQUIRED DETENTION CALCULATED LISING THE RATIONAL METHOD DETENTION VOLUME APPROACH							

10 YEA	10 YEAR - 1 HOUR STORAGE							
Duration =	60	minutes						
P =	0.777							
RUNOFF VOLUME	E - Vr=C*(P/12)*A							
BASIN	Vr	Vr						
I.D.	(ac-ft)	(CF)						
PR-01	0.075	3,249						

The Rational Method Detention Volume approach was used to estimate the required storage volume for the project. The proposed retention mitigation improvements include four drywells.

Drywells are being used for stormwater mitigation infrastructure. A drywell is a BMP that incorporates manhole structures with perforated barrels at the deeper depths. Washed screened rock is installed around the exterior of the perforated sections. When sub-soils are capable of moderate to high infiltration rates, drywells are considered to be a viable BMP. They dramatically reduce the increased runoff and volume of stormwater generated from surrounding impervious areas and promote infiltration; thereby improving the water quality of stormwater runoff. Based on the NRCS soils data as well as the onsite soils report prepared for this parcel, the underlying soils consist of gravel with cobbles which are ideal for infiltrating water.

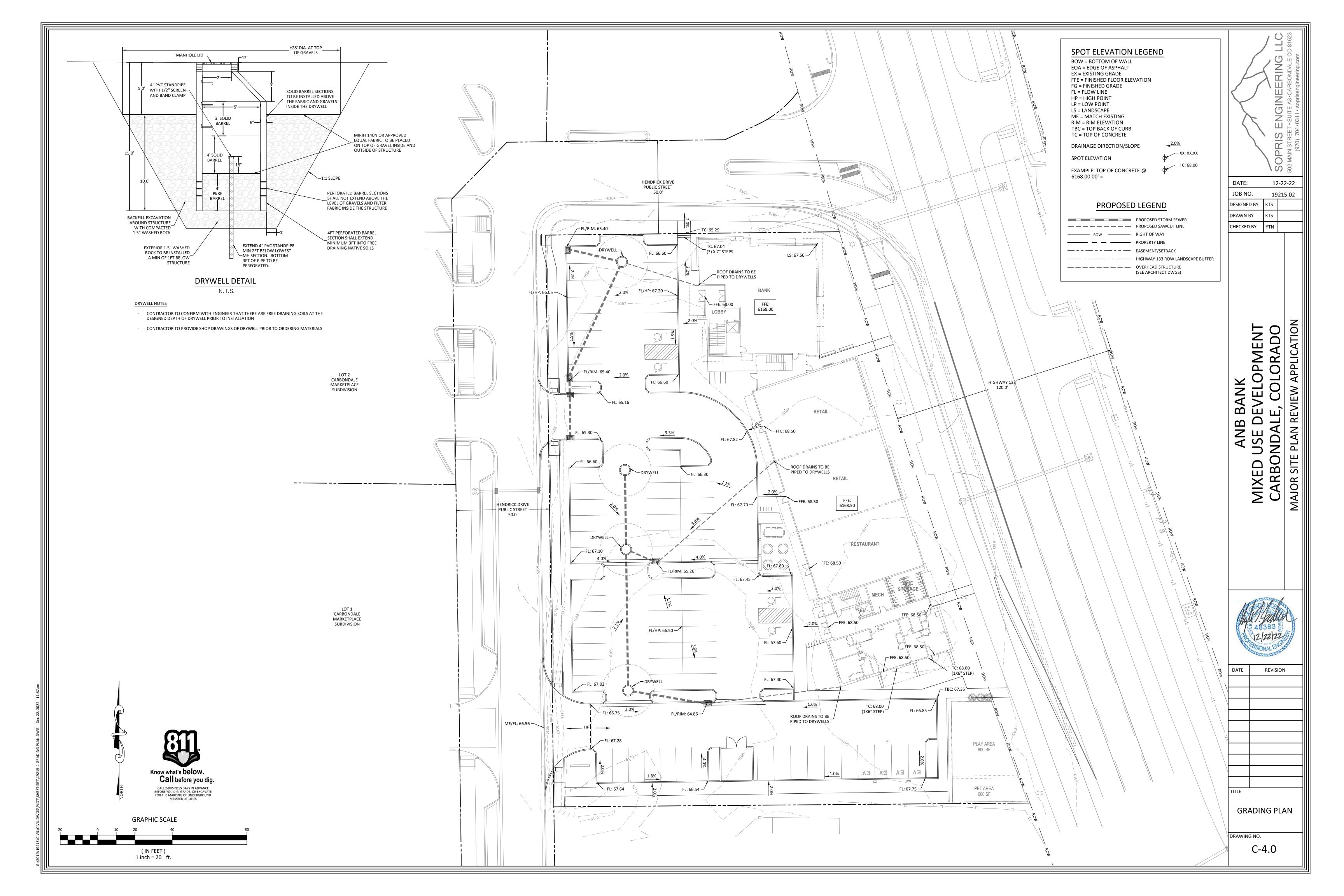
The available volume provided by the drywell system includes the area within the structure as well as the available voids within the gravel backfill. The volume of the backfill gravel includes the prism associated with the 1H:1V cut slopes. A 30% void ratio was used for estimating the available volume within voids of the gravel material. The available storage within the connecting storm drains was not included in the storage calculation. In addition, the infiltration capacity of the drywell system was also neglected which was considered to be a conservative approach. Each of the four drywells has an approximate storage volume capacity of 919.5 CF for a total volume provided of 3,678 CF. The design of the drywells is summarized in details attached to the end of this report.

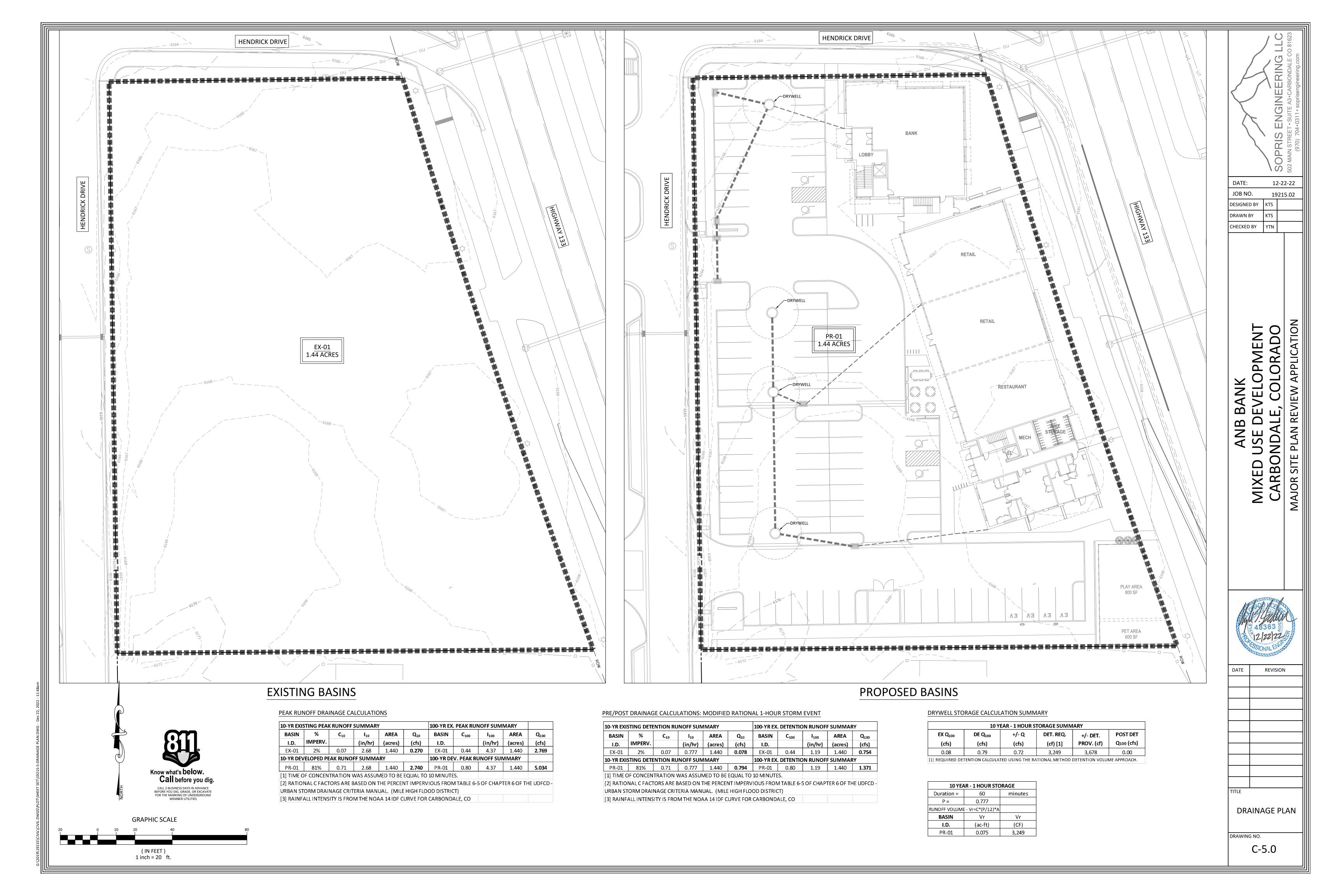
Sediment & Erosion Control

Current consruction standards provide parameters for mitigation of drainage and soil erosion activities relative to site development. Appropriate best management practices (BMP's) shall be applied to this site. These BMP's are primarily grouped for two stages of the development, the construction phase and the post development phase, with the main emphasis on soil erosion and sediment transport controls.

Temporary Erosion Control during the construction phase for the proposed improvements there will be potential for soil erosion and offsite sediment transport triggered by surface runoff during rain events. The contractor must at a minimum install and maintain the following BMPs during the construction phase:

- ✓ An embedded silt fence around the disturbed soils and especially in the low receiving ends of the slopes.
- ✓ Prior to any clearing and grubbing, lot grading, and prior to any construction work, the contractor must construct temporary sediment basins in strategically located areas in order to collect runoff sediment and stop sediment from traveling offsite.
- ✓ The site must be inspected at the end of every 14-day period during construction, and silt deposits from behind the silt fencing and from the sediment pits must be removed regularly to ensure full functioning of this erosion control system. These activities must be logged in a logbook available at the site for inspection at all times.
- ✓ Vehicle tracking pads (mud racks) at the site entrance(s) must be installed to avoid mud tracking into public right of way.
- ✓ Seed & mulch must be placed over disturbed cut and fill slopes, and watered as necessary, to establish temporary vegetative ground cover until paving, gravel surface and/or landscaping is done.


A construction site can be a very dynamic area; because of this the final location and selection of construction BMPs will be left up to the contractor. All appropriate permitting must be acquired prior to commencing construction and the criteria outlined within all appropriate permits must be adhered to until the associated permits have been closed.



Permanent Erosion Control BMPs shall consist of a complete landscaping and ground covering task to permanently re-vegetate and cover bear grounds that will remain open space to avoid long-term soil erosion. This effort will reduce the risk of unnecessary degradation and failure of the drainage system. Temporary erosion control structures installed during construction shall be left in place as necessary and maintained until new vegetation has been reestablished at a 70% level. Upon reaching a satisfactory level of soil stabilization from the new vegetation, all erosion control structures shall be removed; with the exception of the proposed sediment/retention basins. These should remain in place until they become a conflict with future improvements.

Conclusions

The results of this drainage study suggest that no adverse drainage impacts to the subject property or surrounding properties will result from the proposed development. Although onsite peak runoff rates will increase with the added improvements, the site storm water improvements and retention pond will eliminate any increase in stormwater runoff leaving the site. Best Management Practices (BMPs) have been identified and will be implemented during the construction of the improvements. In addition, permanent vegetated cover should be installed as soon as construction allows.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
13	Atencio-Azeltine complex, 3 to 6 percent slopes	В	1.4	100.0%
Totals for Area of Inter	est		1.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

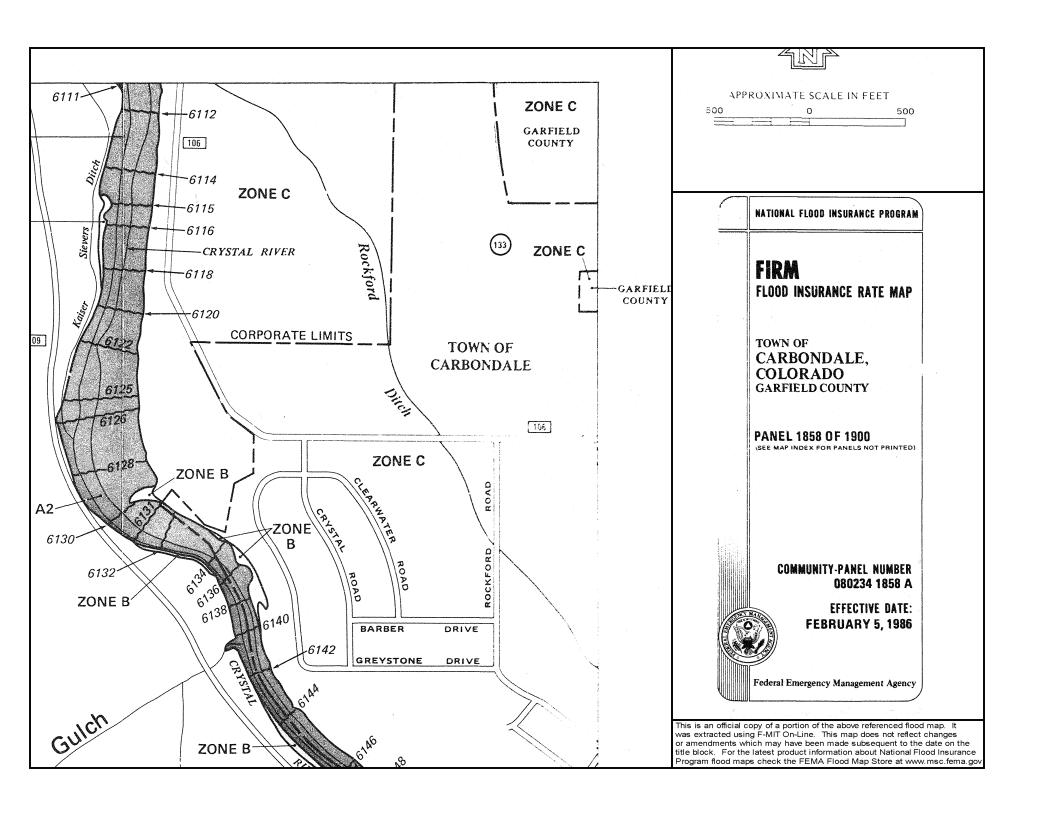
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Runoff Chapter 6

Table 6-5. Runoff coefficients, c

TE 4 1 Tees 4	1	Table 0-3					
Total or Effective	2.77	- 1 7	NRCS Hydr			100 %7	#00 ¥7
% Impervious	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	
2%	0.01	0.01	0.01	0.01	0.04	0.13	0.27
5%	0.02	0.02	0.02	0.03	0.07	0.15	0.29
10%	0.04	0.05	0.05	0.07	0.11	0.19	0.32
15%	0.07	0.08	0.08	0.1	0.15	0.23	0.35
20%	0.1	0.11	0.12	0.14	0.2	0.27	0.38
25%	0.14	0.15	0.16	0.19	0.24	0.3	0.42
30%	0.18	0.19	0.2	0.23	0.28	0.34	0.45
35%	0.21	0.23	0.24	0.27	0.32	0.38	0.48
40%	0.25	0.27	0.28	0.32	0.37	0.42	0.51
45%	0.3	0.31	0.33	0.36	0.41	0.46	0.54
50%	0.34	0.36	0.37	0.41	0.45	0.5	0.58
55%	0.39	0.4	0.42	0.45	0.49	0.54	0.61
60%	0.43	0.45	0.47	0.5	0.54	0.58	0.64
65%	0.48	0.5	0.51	0.54	0.58	0.62	0.67
70%	0.53	0.55	0.56	0.59	0.62	0.65	0.71
75%	0.58	0.6	0.61	0.64	0.66	0.69	0.74
80%	0.63	0.65	0.66	0.69	0.71	0.73	0.77
85%	0.68	0.7	0.71	0.74	0.75	0.77	0.8
90%	0.73	0.75	0.77	0.79	0.79	0.81	0.84
95%	0.79	0.81	0.82	0.83	0.84	0.85	0.87
100%	0.84	0.86	0.87	0.88	0.88	0.89	0.9
Total or Effective			NRCS Hydr	ologic Soil	Group B		
% Impervious	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year
2%	0.01	0.01	0.07	0.26	0.34	0.44	0.54
5%	0.03	0.03	0.1	0.28	0.36	0.45	0.55
10%	0.06	0.07	0.14	0.31	0.38	0.47	0.57
15%	0.09	0.11	0.18	0.34	0.41	0.5	0.59
20%	0.13	0.15	0.22	0.38	0.44	0.50	0.61
25%	0.15					0.52	0.61
	0.17	0.19	0.26	0.41	0.47	0.52	0.61
30%	0.17	0.19	0.26 0.3	0.41 0.44			
30% 35%					0.47	0.54	0.63
	0.2	0.23	0.3	0.44	0.47 0.49	0.54 0.57	0.63 0.65
35%	0.2 0.24	0.23 0.27	0.3 0.34	0.44 0.47	0.47 0.49 0.52	0.54 0.57 0.59	0.63 0.65 0.66
35% 40%	0.2 0.24 0.29	0.23 0.27 0.32	0.3 0.34 0.38	0.44 0.47 0.5	0.47 0.49 0.52 0.55	0.54 0.57 0.59 0.61	0.63 0.65 0.66 0.68
35% 40% 45%	0.2 0.24 0.29 0.33	0.23 0.27 0.32 0.36	0.3 0.34 0.38 0.42	0.44 0.47 0.5 0.53	0.47 0.49 0.52 0.55 0.58	0.54 0.57 0.59 0.61 0.64	0.63 0.65 0.66 0.68 0.7
35% 40% 45% 50%	0.2 0.24 0.29 0.33 0.37	0.23 0.27 0.32 0.36 0.4	0.3 0.34 0.38 0.42 0.46	0.44 0.47 0.5 0.53 0.56	0.47 0.49 0.52 0.55 0.58 0.61	0.54 0.57 0.59 0.61 0.64 0.66	0.63 0.65 0.66 0.68 0.7 0.72
35% 40% 45% 50% 55%	0.2 0.24 0.29 0.33 0.37 0.42	0.23 0.27 0.32 0.36 0.4 0.45	0.3 0.34 0.38 0.42 0.46 0.5	0.44 0.47 0.5 0.53 0.56 0.6	0.47 0.49 0.52 0.55 0.58 0.61 0.63	0.54 0.57 0.59 0.61 0.64 0.66 0.68	0.63 0.65 0.66 0.68 0.7 0.72
35% 40% 45% 50% 55% 60%	0.2 0.24 0.29 0.33 0.37 0.42 0.46	0.23 0.27 0.32 0.36 0.4 0.45 0.49	0.3 0.34 0.38 0.42 0.46 0.5 0.54	0.44 0.47 0.5 0.53 0.56 0.6 0.63	0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66	0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71	0.63 0.65 0.66 0.68 0.7 0.72 0.74 0.76
35% 40% 45% 50% 55% 60% 65%	0.2 0.24 0.29 0.33 0.37 0.42 0.46 0.5	0.23 0.27 0.32 0.36 0.4 0.45 0.49 0.54	0.3 0.34 0.38 0.42 0.46 0.5 0.54 0.58	0.44 0.47 0.5 0.53 0.56 0.6 0.63 0.66	0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69	0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73	0.63 0.65 0.66 0.68 0.7 0.72 0.74 0.76 0.77
35% 40% 45% 50% 55% 60% 65% 70%	0.2 0.24 0.29 0.33 0.37 0.42 0.46 0.5 0.55	0.23 0.27 0.32 0.36 0.4 0.45 0.49 0.54 0.58	0.3 0.34 0.38 0.42 0.46 0.5 0.54 0.58 0.62	0.44 0.47 0.5 0.53 0.56 0.6 0.63 0.66 0.69	0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69 0.72	0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73 0.75	0.63 0.65 0.66 0.68 0.7 0.72 0.74 0.76 0.77 0.79
35% 40% 45% 50% 55% 60% 65% 70%	0.2 0.24 0.29 0.33 0.37 0.42 0.46 0.5 0.55 0.6	0.23 0.27 0.32 0.36 0.4 0.45 0.49 0.54 0.58 0.63	0.3 0.34 0.38 0.42 0.46 0.5 0.54 0.58 0.62 0.66	0.44 0.47 0.5 0.53 0.56 0.6 0.63 0.66 0.69 0.72	0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69 0.72 0.75	0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73 0.75 0.78	0.63 0.65 0.66 0.68 0.7 0.72 0.74 0.76 0.77 0.79 0.81
35% 40% 45% 50% 55% 60% 65% 70% 75% 80%	0.2 0.24 0.29 0.33 0.37 0.42 0.46 0.5 0.55 0.6	0.23 0.27 0.32 0.36 0.4 0.45 0.49 0.54 0.58 0.63 0.67	0.3 0.34 0.38 0.42 0.46 0.5 0.54 0.58 0.62 0.66 0.7	0.44 0.47 0.5 0.53 0.56 0.6 0.63 0.66 0.69 0.72 0.75	0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69 0.72 0.75 0.77	0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73 0.75 0.78	0.63 0.65 0.66 0.68 0.7 0.72 0.74 0.76 0.77 0.79 0.81 0.83
35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85%	0.2 0.24 0.29 0.33 0.37 0.42 0.46 0.5 0.55 0.6 0.64 0.69	0.23 0.27 0.32 0.36 0.4 0.45 0.49 0.54 0.58 0.63 0.67 0.72	0.3 0.34 0.38 0.42 0.46 0.5 0.54 0.58 0.62 0.66 0.7	0.44 0.47 0.5 0.53 0.56 0.6 0.63 0.66 0.69 0.72 0.75 0.78	0.47 0.49 0.52 0.55 0.58 0.61 0.63 0.66 0.69 0.72 0.75 0.77 0.8	0.54 0.57 0.59 0.61 0.64 0.66 0.68 0.71 0.73 0.75 0.78 0.8	0.63 0.65 0.66 0.68 0.7 0.72 0.74 0.76 0.77 0.79 0.81 0.83 0.85

Chapter 6 Runoff

Total or Effective	NRCS Hydrologic Soil Group C						
% Impervious	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year
2%	0.01	0.05	0.15	0.33	0.40	0.49	0.59
5%	0.03	0.08	0.17	0.35	0.42	0.5	0.6
10%	0.06	0.12	0.21	0.37	0.44	0.52	0.62
15%	0.1	0.16	0.24	0.4	0.47	0.55	0.64
20%	0.14	0.2	0.28	0.43	0.49	0.57	0.65
25%	0.18	0.24	0.32	0.46	0.52	0.59	0.67
30%	0.22	0.28	0.35	0.49	0.54	0.61	0.68
35%	0.26	0.32	0.39	0.51	0.57	0.63	0.7
40%	0.3	0.36	0.43	0.54	0.59	0.65	0.71
45%	0.34	0.4	0.46	0.57	0.62	0.67	0.73
50%	0.38	0.44	0.5	0.6	0.64	0.69	0.75
55%	0.43	0.48	0.54	0.63	0.66	0.71	0.76
60%	0.47	0.52	0.57	0.65	0.69	0.73	0.78
65%	0.51	0.56	0.61	0.68	0.71	0.75	0.79
70%	0.56	0.61	0.65	0.71	0.74	0.77	0.81
75%	0.6	0.65	0.68	0.74	0.76	0.79	0.82
80%	0.65	0.69	0.72	0.77	0.79	0.81	0.84
85%	0.7	0.73	0.76	0.79	0.81	0.83	0.86
90%	0.74	0.77	0.79	0.82	0.84	0.85	0.87
95%	0.79	0.81	0.83	0.85	0.86	0.87	0.89
100%	0.83	0.85	0.87	0.88	0.89	0.89	0.9

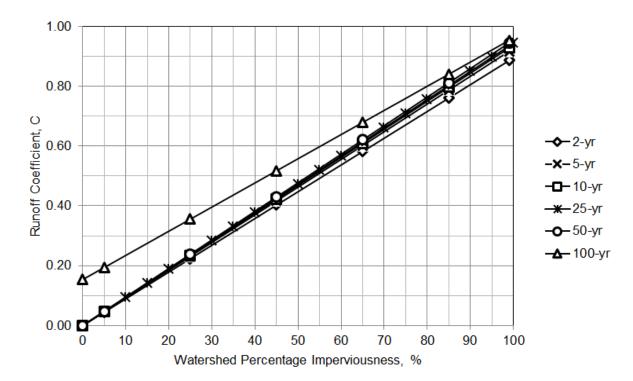


Figure 6-1. Runoff coefficient vs. watershed imperviousness NRCS HSG A

NOAA Atlas 14, Volume 8, Version 2 Location name: Carbondale, Colorado, US* Latitude: 39.4011°, Longitude: -107.2142° Elevation: 6174 ft* * source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

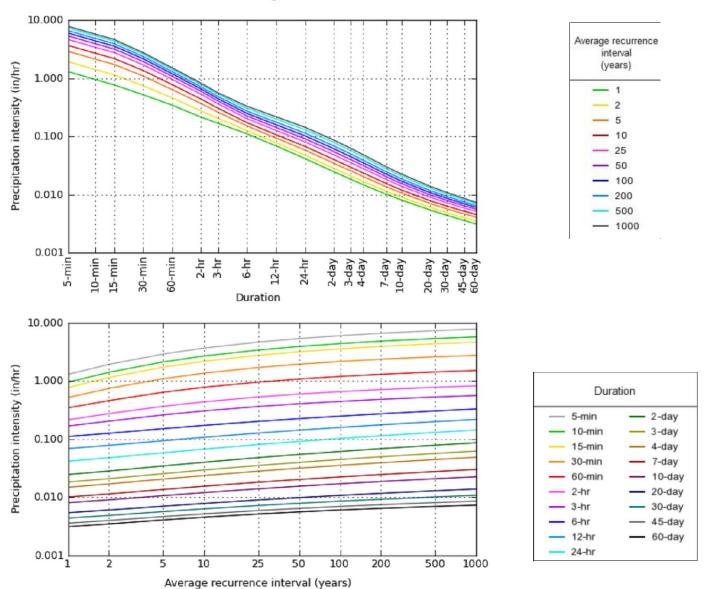
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration	Average recurrence interval (years)									
Juration	1	2	5	10	25	50	100	200	500	1000
5-min	1.30 (1.03-1.67)	1.92 (1.52-2.48)	2.89 (2.29-3.74)	3.66 (2.87-4.76)	4.63 (3.44-6.18)	5.33 (3.89-7.26)	5.96 (4.20-8.40)	6.58 (4.42-9.56)	7.30 (4.70-11.0)	7.78 (4.92-12.1)
10-min	0.948 (0.750-1.22)	1.40 (1.12-1.81)	2.12 (1.67-2.74)	2.68 (2.10-3.49)	3.39 (2.53-4.53)	3.89 (2.84-5.32)	4.37 (3.07-6.15)	4.81 (3.23-7.00)	5.34 (3.44-8.05)	5.69 (3.61-8.85)
15-min	0.768 (0.612-0.992)	1.14 (0.908-1.48)	1.72 (1.36-2.23)	2.18 (1.71-2.83)	2.76 (2.05-3.68)	3.17 (2.31-4.32)	3.55 (2.50-5.00)	3.91 (2.63-5.70)	4.34 (2.80-6.55)	4.63 (2.93-7.20)
30-min	0.518 (0.410-0.666)	0.742 (0.588-0.958)	1.09 (0.860-1.41)	1.36 (1.07-1.77)	1.70 (1.26-2.26)	1.94 (1.41-2.64)	2.16 (1.52-3.03)	2.36 (1.59-3.43)	2.59 (1.67-3.91)	2.75 (1.74-4.27)
60-min	0.344 (0.273-0.443)	0.459 (0.364-0.593)	0.638 (0.504-0.827)	0.777 (0.610-1.01)	0.953 (0.711-1.27)	1.08 (0.787-1.47)	1.19 (0.840-1.68)	1.30 (0.874-1.89)	1.42 (0.920-2.15)	1.51 (0.954-2.34
2-hr	0.214 (0.172-0.273)	0.274 (0.220-0.349)	0.366 (0.292-0.468)	0.438 (0.348-0.562)	0.529 (0.400-0.697)	0.594 (0.439-0.799)	0.654 (0.466-0.908)	0.710 (0.483-1.02)	0.776 (0.506-1.15)	0.820 (0.524-1.26
3-hr	0.168 (0.136-0.212)	0.204 (0.165-0.258)	0.260 (0.209-0.330)	0.305 (0.244-0.389)	0.363 (0.277-0.476)	0.405 (0.302-0.542)	0.444 (0.319-0.613)	0.482 (0.331-0.688)	0.528 (0.348-0.781)	0.560 (0.360-0.851
6-hr	0.111 (0.091-0.138)	0.126 (0.103-0.157)	0.151 (0.123-0.189)	0.172 (0.139-0.217)	0.202 (0.157-0.264)	0.225 (0.171-0.299)	0.248 (0.182-0.341)	0.272 (0.190-0.386)	0.304 (0.204-0.447)	0.329 (0.214-0.493
12-hr	0.069 (0.057-0.085)	0.078 (0.064-0.096)	0.094 (0.077-0.116)	0.107 (0.088-0.133)	0.127 (0.100-0.164)	0.143 (0.110-0.188)	0.159 (0.118-0.216)	0.176 (0.124-0.247)	0.200 (0.135-0.290)	0.218 (0.143-0.322
24-hr	0.042 (0.035-0.051)	0.048 (0.040-0.058)	0.058 (0.049-0.071)	0.067 (0.056-0.083)	0.081 (0.064-0.103)	0.091 (0.071-0.119)	0.102 (0.077-0.137)	0.114 (0.082-0.158)	0.131 (0.089-0.187)	0.143 (0.095-0.209
2-day	0.025 (0.021-0.030)	0.028 (0.024-0.034)	0.035 (0.029-0.042)	0.040 (0.034-0.048)	0.048 (0.039-0.061)	0.055 (0.043-0.070)	0.061 (0.046-0.081)	0.069 (0.050-0.094)	0.079 (0.054-0.111)	0.087 (0.058-0.124
3-day	0.018 (0.016-0.022)	0.021 (0.018-0.025)	0.026 (0.022-0.030)	0.029 (0.025-0.035)	0.035 (0.029-0.044)	0.040 (0.032-0.051)	0.045 (0.034-0.058)	0.050 (0.036-0.067)	0.057 (0.040-0.079)	0.062 (0.042-0.088
4-day	0.015 (0.013-0.018)	0.017 (0.015-0.020)	0.021 (0.018-0.024)	0.024 (0.020-0.028)	0.028 (0.023-0.035)	0.032 (0.025-0.040)	0.035 (0.027-0.046)	0.039 (0.029-0.053)	0.045 (0.031-0.062)	0.049 (0.033-0.069
7-day	0.010 (0.009-0.012)	0.011 (0.010-0.013)	0.014 (0.012-0.016)	0.016 (0.013-0.018)	0.018 (0.015-0.022)	0.020 (0.016-0.025)	0.022 (0.017-0.029)	0.025 (0.018-0.033)	0.028 (0.020-0.038)	0.030 (0.021-0.042
10-day	0.008 (0.007-0.009)	0.009 (0.008-0.011)	0.011 (0.009-0.012)	0.012 (0.010-0.014)	0.014 (0.012-0.017)	0.016 (0.013-0.019)	0.017 (0.013-0.022)	0.019 (0.014-0.025)	0.021 (0.015-0.028)	0.023 (0.016-0.031
20-day	0.005 (0.005-0.006)	0.006 (0.005-0.007)	0.007 (0.006-0.008)	0.008 (0.007-0.009)	0.009 (0.008-0.011)	0.010 (0.008-0.012)	0.011 (0.008-0.014)	0.012 (0.009-0.015)	0.013 (0.009-0.017)	0.014 (0.010-0.019
30-day	0.004 (0.004-0.005)	0.005 (0.004-0.006)	0.006 (0.005-0.006)	0.006 (0.006-0.007)	0.007 (0.006-0.009)	0.008 (0.007-0.009)	0.009 (0.007-0.011)	0.009 (0.007-0.012)	0.010 (0.007-0.013)	0.011 (0.008-0.018
45-day	0.004 (0.003-0.004)	0.004 (0.004-0.005)	0.005 (0.004-0.005)	0.005 (0.005-0.006)	0.006 (0.005-0.007)	0.006 (0.005-0.008)	0.007 (0.006-0.009)	0.007 (0.006-0.009)	0.008 (0.006-0.011)	0.009 (0.006-0.011
60-day	0.003 (0.003-0.003)	0.003 (0.003-0.004)	0.004 (0.004-0.005)	0.005 (0.004-0.005)	0.005 (0.004-0.006)	0.006 (0.005-0.007)	0.006 (0.005-0.007)	0.006 (0.005-0.008)	0.007 (0.005-0.009)	0.007 (0.005-0.010

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.


Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

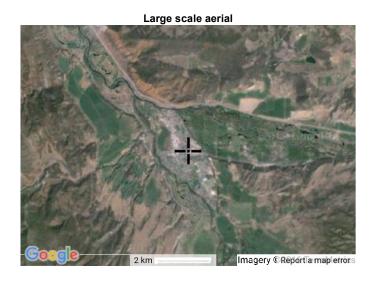
1 of 4 4/8/2016 8:04 AM

PDS-based intensity-duration-frequency (IDF) curves Latitude: 39.4011°, Longitude: -107.2142°

NOAA Atlas 14, Volume 8, Version 2


Created (GMT): Fri Apr 8 12:54:05 2016

Back to Top


Maps & aerials

2 of 4

3 of 4

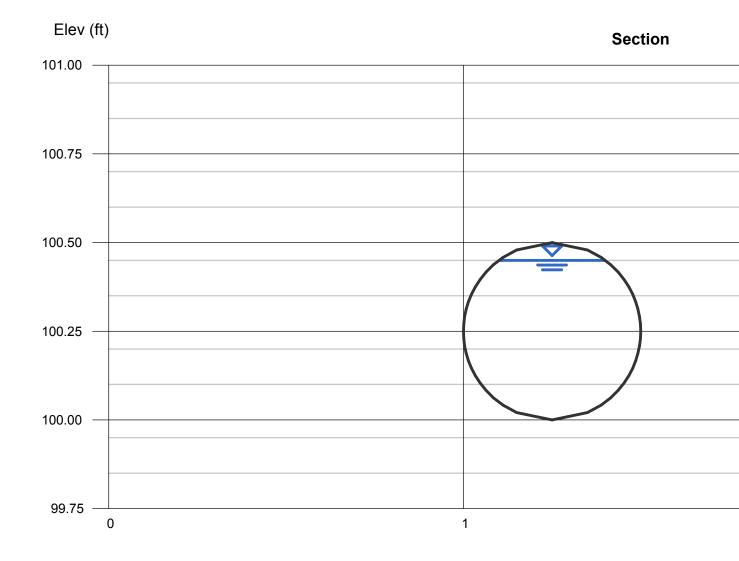
Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

4/8/2016 8:04 AM 4 of 4

Channel Report

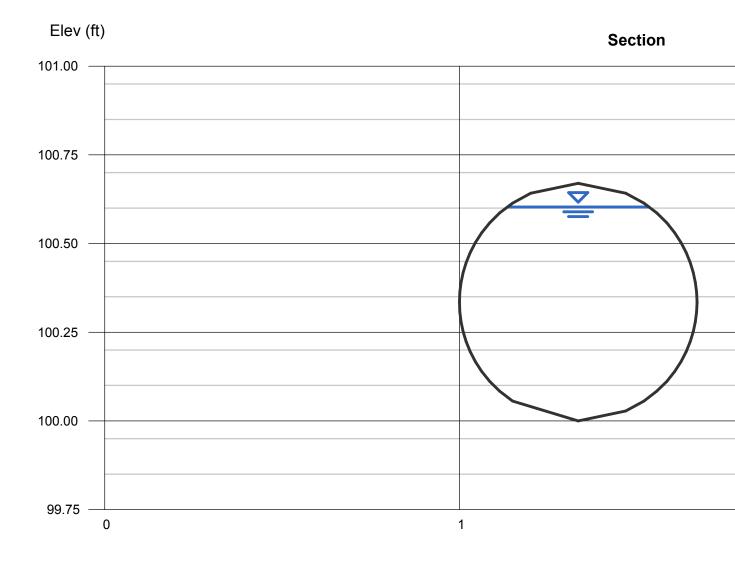

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 21 2017

6 IN PIPE 2% SLOPE - FLOW

No. Increments = 10

Circular		Highlighted	
Diameter (ft)	= 0.50	Depth (ft)	= 0.45
		Q (cfs)	= 0.999
		Area (sqft)	= 0.19
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 5.37
Slope (%)	= 2.00	Wetted Perim (ft)	= 1.25
N-Value	= 0.011	Crit Depth, Yc (ft)	= 0.48
		Top Width (ft)	= 0.30
Calculations		EGL (ft)	= 0.90
Compute by:	Q vs Depth		

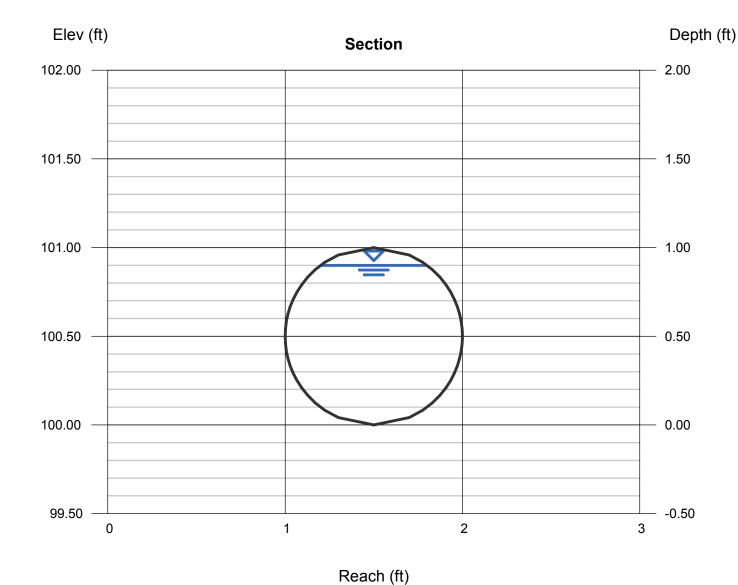

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 21 2017

8 IN PIPE 2% SLOPE - FLOW

Circular		Highlighted	
Diameter (ft)	= 0.67	Depth (ft)	= 0.60
		Q (cfs)	= 2.181
		Area (sqft)	= 0.33
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 6.52
Slope (%)	= 2.00	Wetted Perim (ft)	= 1.68
N-Value	= 0.011	Crit Depth, Yc (ft)	= 0.64
		Top Width (ft)	= 0.40
Calculations		EGL (ft)	= 1.26
Compute by:	Q vs Depth		
No. Increments	= 10		


Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Wednesday, Jun 21 2017

12 IN PIPE 2% SLOPE - FLOW

Circular		Highlighted	
Diameter (ft)	= 1.00	Depth (ft)	= 0.90
. ,		Q (cfs)	= 6.346
		Area (sqft)	= 0.74
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 8.52
Slope (%)	= 2.00	Wetted Perim (ft)	= 2.50
N-Value	= 0.011	Crit Depth, Yc (ft)	= 0.97
		Top Width (ft)	= 0.60
Calculations		EGL (ft)	= 2.03
Compute by:	Q vs Depth		
No. Increments	= 10		

DRYWELL VOLUME DETAIL

ANB BANK MIXED USE DEVELOPMENT - SE JOB #19215.02

CARBONDALE, COLORADO

APPROXIMATE STORAGE VOLUME FOR DRYWELL

DRY WELL DATA				
D1(FT)=	2			
R1 (FT)=	1			
H1 (FT)=	3			
D2 (FT)=	5			
R2 (FT)=	2.5			
H2 (FT)=	7			
H3 (FT)=	4			
Structure H (FT) =	14			
H4=Gravel below structure				
H4 (FT)=	1			
HT = Total Drywell Depth				
HT (FT)=	15			
HB = Soil backfill on top of outside gravel				
HB (FT)=	5			
HG = Height of Gravel backfill				
HG (FT)=	10			
D20 (FT)=	6			
R20 (FT)=	3			
D3 (FT)=	8			
R3 (FT)=	4			
D4 (FT)=	28			
R4 (FT)=	14			
(Input Cells)				

V1 = Inside structure cone volume		
$V1 = 1/3*PI*(R_1^2 + R_1R_2 + R_2^2)*H1$		
V1(CF) =	30.6	
V2 = Inside cylinder vol. (no stone)		
$V2 = PI*R_2^2*H2$		
V2 (CF) =	137.4	
V3 = Inside cylinder vol (w/stone, 30% void)		
V3 = PI*R ₂ ² *H3*30%		
V3 (CF) =	23.6	
V4 = Vol gravel backfill (partial cone-cylinder*30% void)		
$V4 = (1/3*PI*(R4^{2})*(HG+((1/3)*HG))-(1/3*PI*(R3^{2})*(1/3)*HG)-(PI*R_{20}^{2}*(HG-H4)*.30)$		
V4 (CF) =	728	
TOTAL VOLUME =	919.5	

SOPRIS ENGINEERING - LLC

CIVIL CONSULTANTS 502 MAIN STREET, SUITE A3 CARBONDALE, COLORADO 81623 (970) 704-0311 Traffic Impact Study

ANB Bank Carbondale

Carbondale, Colorado

Prepared for:

Sopris Engineering, LLC

Kimley»Horn

TRAFFIC IMPACT STUDY

ANB Bank - Carbondale

Carbondale, Colorado

Prepared for Sopris Engineering, LLC 502 Main Street Suite A-3 Carbondale, Colorado 81623

Prepared by
Kimley-Horn and Associates, Inc.
4582 South Ulster Street
Suite 1500
Denver, Colorado 80237
(303) 228-2300

October 2022

This document, together with the concepts and designs presented herein, as an instrument of service, is intended only for the specific purpose and client for which it was prepared. Reuse of and improper reliance on this document without written authorization and adaptation by Kimley-Horn and Associates, Inc. shall be without liability to Kimley-Horn and Associates, Inc.

TABLE OF CONTENTS

TABLE OF CONTENTS	
LIST OF TABLES	i
LIST OF FIGURES	i
1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTION	3
3.0 EXISTING AND FUTURE CONDITIONS	5
3.1 Existing Study Area	5
3.2 Existing Roadway Network	5
3.3 Existing Traffic Volumes	10
3.4 Unspecified Development Traffic Growth	10
4.0 PROJECT TRAFFIC CHARACTERISTICS	14
4.1 Trip Generation	14
4.2 Trip Distribution	15
4.3 Traffic Assignment	15
4.4 Total (Background Plus Project) Traffic	15
5.0 TRAFFIC OPERATIONS ANALYSIS	20
5.1 Analysis Methodology	20
5.2 Key Intersection Operational Analysis	21
5.3 CDOT Turn Bay Length Analysis	26
5.4 Vehicle Queuing Analysis	27
5.5 Improvement Summary	28
6.0 CONCLUSIONS AND RECOMMENDATIONS	30

APPENDICES

Appendix A – Intersection Count Sheets

Appendix B – Future Traffic Projections

Appendix C – Trip Generation Worksheets

Appendix D – Intersection Analysis Worksheets

Appendix E – Conceptual Site Plan

LIST OF TABLES

Table 1 – ANB Bank - Carbondale Traffic Generation	15
Table 2 – Level of Service Definitions	20
Table 3 – Hendrick Drive & SH-133 LOS Results	22
Table 4 – Main Street & Hendrick Drive LOS Results	23
Table 5 – Main Street & SH-133 LOS Results	25
Table 6 – Turn Lane Queuing Analysis Results	27
LIST OF FIGURES	
Figure 1 – Vicinity Map	4
Figure 2 – Existing Geometry and Control	9
Figure 3 – 2022 Existing Traffic Volumes	11
Figure 4 – 2025 Background Traffic Volumes	12
Figure 5 – 2045 Background Traffic Volumes	13
Figure 6 – Project Trip Distribution	16
Figure 7 – Project Traffic Assignment	17
Figure 8 – 2025 Total Traffic Volumes	18
Figure 9 – 2045 Total Traffic Volumes	19
Figure 10 – 2045 Recommended Geometry and Control	29

1.0 EXECUTIVE SUMMARY

ANB Bank - Carbondale is proposed to be located on the southwest corner of State Highway 133 (SH-133) and Hendrick Drive intersection in Carbondale, Colorado. ANB Bank - Carbondale is proposed to include a building with approximately a 3,271 square foot bank, 4,799 square feet of retail space, a 2,290 square foot restaurant, 4,376 square feet of office uses and 17 units of multifamily residential, located mainly above. It is expected that the ANB Bank - Carbondale building will be completed in the next couple of years. Therefore, analysis was conducted for the 2025 short-term buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics to determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The following intersections were incorporated into this traffic study in accordance with Town of Carbondale and State of Colorado Department of Transportation (CDOT) standards and requirements:

- Hendrick Drive and SH-133
- Main Street and Hendrick Drive
- Main Street and SH-133 Roundabout

Regional access to the ANB Bank building development will be provided by State Highway 82 (SH-82) and State Highway 133 (SH-133). Primary access will be provided by SH-133 and Main Street. Direct access to the proposed project will be provided by driveways along Hendrick Drive. Hendrick Drive was recently constructed to extend between SH-133 and Main Street. The Hendrick Drive and SH-133 intersection is a three-quarter access (left out restricted) while the Main Street and Hendrick Drive intersection provides full turning movements.

The ANB Bank - Carbondale building development to include the mix of uses proposed is expected to generate approximately 1,070 weekday daily trips, with 47 of these trips occurring during the morning peak hour and 108 of these trips occurring during the afternoon peak hour.

Based on the analysis presented in this report, Kimley-Horn believes ANB Bank - Carbondale will be successfully incorporated into the existing and future roadway network. Analysis of the existing

street network, the proposed project development, and expected traffic volumes resulted in the following recommendations:

- It is anticipated that CDOT will require an access permit at the intersection of SH-133 and Hendrick Drive with development of the project due to project traffic volumes increasing the existing and previously permitted volumes by more than 20 percent.
- The existing street network as constructed today will accommodate full buildout of the ANB Bank – Carbondale mixed use building development successfully without the need for any additional offsite improvements in the 2025 near-term horizon.
- By 2045, the eastbound right turn from Hendrick Drive to southbound SH-133 may need to
 operate with free movements by the construction of an acceleration lane along southbound
 SH-133. Therefore, an acceleration lane with 150 feet of length and a 120-foot taper would
 need to be provided along southbound SH-133 based on the CDOT SHAC for the 35-mile per
 hour posted speed limit.
- By 2045, the eastbound and westbound approaches of the Main Street and SH-133
 roundabout may need to include separate 100-foot right turn lanes. Traffic volumes should be
 monitored in the future at this intersection to determine if and when this improvement is
 necessary.
- Any on-site and off-site signing and striping improvements should be incorporated into the Civil Drawings, and conform to Town of Carbondale and CDOT standards, as well as the Manual on Uniform Traffic Control Devices – 2009 Edition (MUTCD).

2.0 INTRODUCTION

Kimley-Horn and Associates, Inc. has prepared this report to document the results of a Traffic Impact Study for ANB Bank - Carbondale proposed to be located on the southwest corner of State Highway 133 (SH-133) and Hendrick Drive intersection in Carbondale, Colorado. A vicinity map illustrating the ANB Bank - Carbondale development location is shown in **Figure 1**. ANB Bank - Carbondale is proposed to include a building with approximately a 3,271 square foot bank, 4,799 square feet of retail space, a 2,290 square foot restaurant, 4,376 square feet of office uses and 17 units of multifamily residential, located mainly above. A conceptual site plan is attached in **Appendix F**. It is expected that ANB Bank - Carbondale will be completed in the next couple of years; therefore, analysis was conducted for the 2025 short-term buildout horizon as well as the 2045 long-term twenty-year planning horizon.

The purpose of this traffic study is to identify project traffic generation characteristics to determine potential project traffic related impacts on the local street system and to develop the necessary mitigation measures required for the identified traffic impacts. The following intersections were incorporated into this traffic study in accordance with Town of Carbondale and State of Colorado Department of Transportation (CDOT) standards and requirements:

- Hendrick Drive and SH-133
- Main Street and Hendrick Drive
- Main Street and SH-133 Roundabout

Regional access to the ANB Bank building development will be provided by State Highway 82 (SH-82) and State Highway 133 (SH-133). Primary access will be provided by SH-133 and Main Street. Direct access to the proposed project will be provided by driveways along Hendrick Drive. Hendrick Drive was recently constructed to extend between SH-133 and Main Street. The Hendrick Drive and SH-133 intersection is a three-quarter access (left out restricted) while the Main Street and Hendrick Drive intersection provides full turning movements.

FIGURE 1
ANB BANK — CARBONDALE
CARBONDALE, COLORADO
VICINITY MAP

3.0 EXISTING AND FUTURE CONDITIONS

3.1 Existing Study Area

The ABN Bank Carbondale site is currently vacant land. The surrounding area is currently under construction with Main Street Market Place project to the west and southwest and the City Market Grocery and Gas Station recently built to the north and northwest. To the east across SH-133 is the Sopris Shopping Center.

3.2 Existing Roadway Network

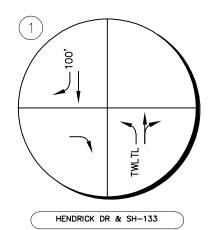
SH-133 is a CDOT roadway, categorized as NR-B: Non-Rural Arterial classification with a speed limit of 35 miles per hour adjacent to the site. SH-133 provides one lane of travel each direction, northbound and southbound, and is separated by a two-way left-turn lane.

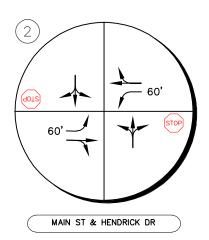
Main Street provides one lane of travel each direction, eastbound and westbound, and has a posted speed limit of 25 miles per hour to the west of the SH-133 roundabout. Main Street is a major east-west roadway through Carbondale.

The Hendrick Drive and SH-133 three-quarter movement intersection is unsignalized with stop control on the eastbound Hendrick Drive approach. The southbound SH-133 approach consists of a right turn lane and a through lane while the northbound SH-133 approach consists of a two-way left turn lane and a through lane. The eastbound Hendrick Drive approach consists of a right turn lane operating under stop control. An aerial photo of the existing intersection configuration is below (north is up - typical).

Henrick Drive and SH-133

The Main Street and Hendrick Drive intersection is unsignalized with stop control on the northbound and southbound approaches of Hendrick Drive. The eastbound and westbound approaches of Main Street consist of a left turn lane and a shared through/right turn lane. The Hendrick Drive northbound and southbound approaches consist of one shared lane for all movements. An aerial photo of the existing intersection configuration is below.


Main Street and Henrick Drive


The Main Street and SH-133 intersection is a roundabout, with the northbound and southbound SH-133 approaches having two approach lanes, while the eastbound and westbound Main Street approaches have one approach lane. An aerial photo of the existing intersection configuration is below.

Main Street and SH-133

The intersection lane configuration and control for the study area intersections are shown in **Figure 2**.

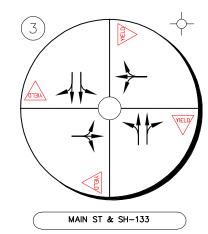


FIGURE 2 ANB BANK - CARBONDALE CARBONDALE, COLORADO EXISTING GEOMETRY AND CONTROL

LEGEND

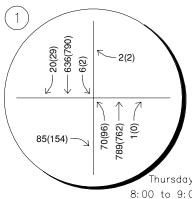
Study Area Key Intersection

Roundabout

Yield Controlled Approach Stop Controlled Approach

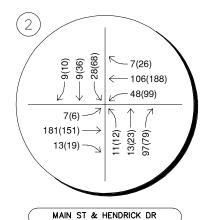
Roadway Speed Limit

-100' Turn Lane Length (feet)



3.3 Existing Traffic Volumes

Existing turning movement counts were conducted at the study intersections on Thursday, October 20, 2022, during the weekday morning and afternoon peak hours. The counts were conducted during the morning and afternoon peak hours of adjacent street traffic in 15-minute intervals from 7:00 AM to 9:00 AM and 4:00 PM to 6:00 PM on this count date. The existing intersection traffic volumes are shown in **Figure 3** with count sheets provided in **Appendix A**.


3.4 Unspecified Development Traffic Growth

According to information provided on the website for the Colorado Department of Transportation (CDOT), the 20-year growth factor along SH-133 adjacent to the site is 1.20. The 20-year growth factor equates to annual growth rate of 0.92 percent. Therefore, a one (1) percent annual growth rate was used to estimate near term 2025 and long term 2045 traffic volume projections at the key intersections. Traffic information from the CDOT Online Transportation Information System (OTIS) website is included in **Appendix B**. In addition, project traffic volume assignment for the adjacent Carbondale Marketplace Lot 5, Main Street Marketplace, and Carbondale Center (fka Sopris Shopping Center Redevelopment) were added directly to the intersections. Traffic assignment for these background studies are also included in **Appendix B** for reference. Background traffic volumes for 2025 and 2045 are shown in **Figures 4** and **5**, respectively.

Thursday, October 20, 2022 8:00 to 9:00AM (4:30 to 5:30PM)

HENDRICK DR & SH-133

Thursday, October 20, 2022 8:00 to 9:00AM (4:15 to 5:15PM) Thursday, October 20, 2022 8:00 to 9:00AM (4:30 to 5:30PM)

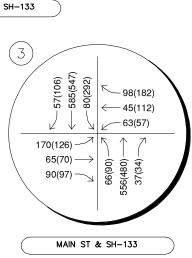


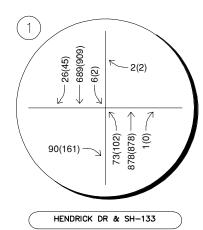
FIGURE 3

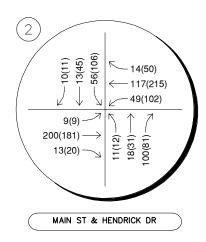
ANB BANK — CARBONDALE

CARBONDALE, COLORADO

2022 EXISTING TRAFFIC VOLUMES

LEGEND


Study Area Key Intersection


XXX(XXX)

Weekday AM(PM)
Peak Hour Traffic Volumes

XX.XOO

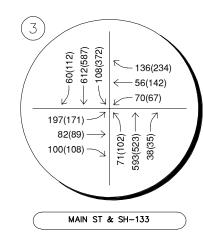
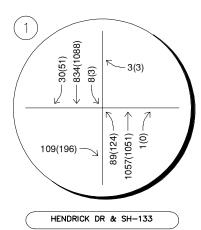
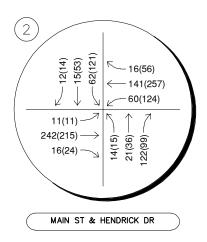


FIGURE 4

ANB BANK — CARBONDALE CARBONDALE, COLORADO 2025 BACKGROUND TRAFFIC VOLUMES

LEGEND


Study Area Key Intersection



Weekday AM(PM)
Peak Hour Traffic Volumes

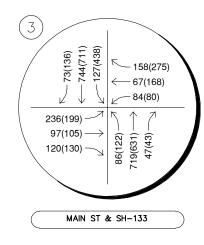


FIGURE 5

ANB BANK — CARBONDALE CARBONDALE, COLORADO 2045 BACKGROUND TRAFFIC VOLUMES

LEGEND

Study Area Key Intersection

Weekday AM(PM)
Peak Hour Traffic Volumes

4.0 PROJECT TRAFFIC CHARACTERISTICS

4.1 Trip Generation

Site-generated traffic estimates are determined through a process known as trip generation. Rates and equations are applied to the proposed land use to estimate traffic generated by the development during a specific time interval. The acknowledged source for trip generation rates is the *Trip Generation Manual*¹ published by the Institute of Transportation Engineers (ITE). ITE has established trip rates in nationwide studies of similar land uses. For this study, Kimley-Horn used the ITE Trip Generation Report average rates that apply to Multifamily Low-Rise Housing (ITE Land Use Code 220), General Office Building (ITE Land Use Code 710), Strip Retail Plaza (ITE Land Use Code 822), Walk-In Bank (ITE Land Use Cade 911), and High-Turnover Sit-Down Restaurant (ITE Land Use Code 932) for traffic associated with the development. Of note, no internal capture or pass-by reductions were applied to be consistent with CDOT guidelines and provide a conservative analysis. Additionally, ANB Banks typically open at 9 am, which identifies nominal traffic generation during the morning peak hour. This is also represented by the Walk-In Bank land use code from the ITE Trip Generation as morning peak hour data and equations are not available for this use.

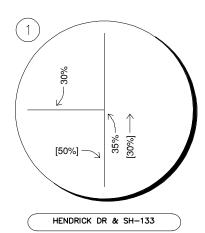
The ANB Bank - Carbondale building development to include the mix of uses proposed is expected to generate approximately 1,070 weekday daily trips, with 47 of these trips occurring during the morning peak hour and 108 of these trips occurring during the afternoon peak hour. Calculations were based on the procedure and information provided in the ITE *Trip Generation Manual*, 11th Edition – Volume 1: User's Guide and Handbook, 2021. **Table 1** summarizes the estimated trip generation for the ANB Bank - Carbondale. The trip generation worksheets are included in **Appendix C**.

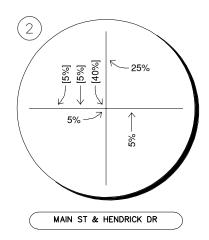
¹ Institute of Transportation Engineers, *Trip Generation Manual*, Eleventh Edition, Washington DC, 2021.

Table 1 – ANB Bank - Carbondale Traffic Generation

			Weekda	y Vehicl	e Trips			
Land Use and Size	Daily	AM	l Peak H	our	PM Peak Hour			
	Daily	ln	Out	Total	In	Out	Total	
Multifamily Low-Rise Housing (ITE 220) – 17 Dwelling Units	116	2	5	7	6	3	9	
General Office Building (ITE 710) – 4,376 Square Feet	48	6	1	7	1	5	6	
Strip Retail Plaza (ITE 822) – 4,799 Square Feet	262	7	4	11	16	16	32	
Walk-In Bank (ITE 911) – 3,271 Square Feet	398	0	0	0	18	22	40	
High-Turnover Sit Down (ITE 932) – 2,290 Square Feet	246	12	10	22	13	8	21	
Total Project Trips	1,070	27	20	47	54	54	108	

4.2 Trip Distribution


Distribution of site traffic on the street system was based on the area street system characteristics, existing traffic patterns, existing and anticipated surrounding employment, school, attraction and demographic information, and the proposed access system for the project. The directional distribution of traffic is a means to quantify the percentage of site-generated traffic that approaches the site from a given direction and departs the site back to the original source. The project trip distribution for the proposed development is illustrated in **Figure 6**.


4.3 Traffic Assignment

The ANB Bank - Carbondale mixed use building development traffic assignment was obtained by applying the project trip distribution to the estimated traffic generation of the development shown in **Table 1**. Traffic assignment is shown in **Figure 7**.

4.4 Total (Background Plus Project) Traffic

Site traffic volumes were added to the background volumes to represent estimated traffic conditions for the short-term 2025 buildout horizon and long-term 2045 twenty-year planning horizon. These total traffic volumes for the study area are illustrated for the 2025 and 2045 horizon years in **Figures 8** and **9**, respectively.

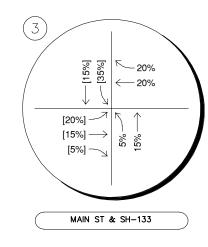
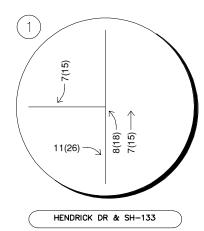
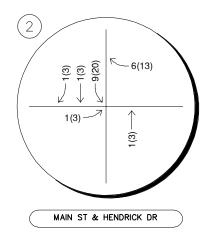


FIGURE 6 ANB BANK - CARBONDALE CARBONDALE, COLORADO PROJECT TRIP DISTRIBUTION


Study Area Key Intersection



XXX External Trip Distribution Percentage

XX%[XX%] Entering[Exiting]
Trip Distribution Percentage

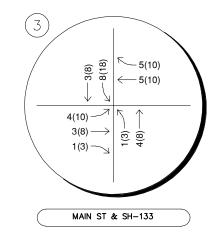
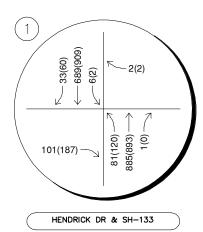
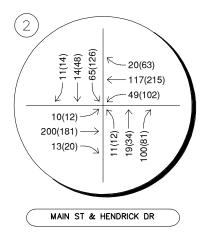


FIGURE 7 ANB BANK - CARBONDALE CARBONDALE, COLORADO PROJECT TRAFFIC ASSIGNMENT


LEGEND



Study Area Key Intersection

XXX(XXX) Weekday AM(PM) Peak Hour Traffic Volumes

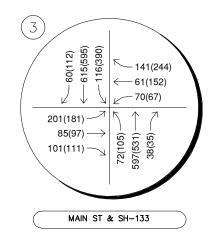


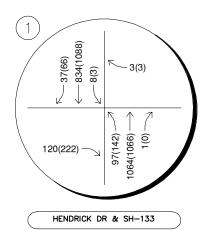
FIGURE 8

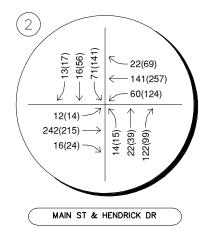
ANB BANK — CARBONDALE

CARBONDALE, COLORADO

2025 TOTAL TRAFFIC VOLUMES

LEGEND


Study Area Key Intersection



Weekday AM(PM)
Peak Hour Traffic Volumes

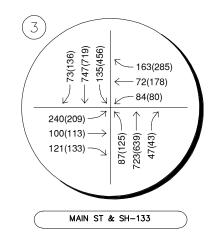


FIGURE 9

ANB BANK — CARBONDALE CARBONDALE, COLORADO 2045 TOTAL TRAFFIC VOLUMES

LEGEND

Study Area Key Intersection

XXX(XXX)

Weekday AM(PM)
Peak Hour Traffic Volumes

XX,X00

5.0 TRAFFIC OPERATIONS ANALYSIS

Kimley-Horn's analysis of traffic operations in the site vicinity was conducted to determine potential capacity deficiencies in the 2025 and 2045 development horizons at the identified key intersections. The acknowledged source for determining overall capacity is the 6th Edition of the *Highway Capacity Manual (HCM)*².

5.1 Analysis Methodology

Capacity analysis results are listed in terms of Level of Service (LOS). LOS is a qualitative term describing operating conditions a driver will experience while traveling on a particular street or highway during a specific time interval. It ranges from A (very little delay) to F (long delays and congestion). For intersections and roadways in this study area, standard traffic engineering practice recommends overall intersection LOS D and movement/approach LOS E as the minimum desirable thresholds for acceptable operations. **Table 2** shows the definition of level of service for signalized and unsignalized intersections.

Table 2 - Level of Service Definitions

Level of Service	Signalized Intersection Average Total Delay (sec/veh)	Unsignalized Intersection Average Total Delay (sec/veh)
Α	≤ 10	≤ 10
В	> 10 and ≤ 20	> 10 and ≤ 15
С	> 20 and ≤ 35	> 15 and ≤ 25
D	> 35 and ≤ 55	> 25 and ≤ 35
E	> 55 and ≤ 80	> 35 and ≤ 50
F	> 80	> 50

Definitions provided from the Highway Capacity Manual, Sixth Edition, Transportation Research Board, 2016.

Study area intersections were analyzed based on average total delay analysis for signalized and unsignalized intersections. Under the unsignalized analysis, the LOS for a two-way stop-controlled intersection is determined by the computed or measured control delay and is defined for each minor movement. LOS for a two-way stop-controlled intersection is not defined for the intersection as a whole. LOS for signalized, roundabout, and all-way stop controlled intersections are defined for each approach and for the overall intersection.

_

² Transportation Research Board, *Highway Capacity Manual*, Sixth Edition, Washington DC, 2016.

5.2 Key Intersection Operational Analysis

Calculations for the operational level of service at the key intersections for the study area are provided in **Appendix D**. The existing year analysis is based on the lane geometry and intersection control shown in **Figure 2**. Existing peak hour factors were utilized in the existing and 2025 horizon analysis years while the HCM urban standard of 0.92 was used for the long-term 2045 horizon analysis. Synchro traffic analysis software was used to analyze the signalized, and unsignalized key intersections for HCM level of service. Whereas Sidra software was used to analyze the roundabout key intersections.

Hendrick Drive and SH-133

The SH-133 and Hendrick Drive unsignalized intersection is three-quarter with stop control on the eastbound Hendrick Drive right turn only approach. The existing intersection movements operate with LOS C or better during the morning and afternoon peak hours. With the addition of all the surrounding developments and this project traffic in 2025, all movements at this intersection are anticipated to operate acceptably with LOS E or better during both the morning and afternoon peak hours. However, if future 2045 traffic volumes are realized, the eastbound right turn may need to be converted from a STOP condition to a channelized FREE right turn with a 150-foot plus 120-foot taper acceleration lane constructed along southbound SH-133. With this improvement in 2045, all movements at this intersection are expected to operate at LOS B or better during both peak hours. **Table 3** summarizes the intersection LOS.

Table 3 - Hendrick Drive & SH-133 LOS Results

	AM Pea	k Hour	PM Pea	ak Hour
Scenario	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2022 Existing Northbound Left Eastbound Right	9.5 15.2	A C	10.6 24.5	B C
2025 Background Northbound Left Eastbound Right	9.8 16.4	A C	11.6 34.2	B D
2025 Background Plus Project Northbound Left Eastbound Right	9.9 16.9	A C	11.9 41.4	B E
2045 Background Northbound Left Eastbound Right	10.7 21.5	ВС	13.5 86.5	B F
2045 Background Plus Project # Northbound Left Eastbound Right	10.9 0.0	B A	14.1 0.0	B A

^{# =} Addition of a EBR to SBT Acceleration Lane along southbound SH-133

Main Street and Henrick Drive

The Main Street and Hendrick Drive intersection is unsignalized with stop control on the northbound and southbound Hendrick Drive approaches. The intersection movements currently operate at LOS C or better during both peak hours. With the addition of all the surrounding developments and this project, the movements at this intersection are anticipated to operate acceptably with LOS D or better during both the morning and afternoon peak hours through the long-term 2045 horizon. **Table 4** provides the results of the level of service at this intersection.

Table 4 - Main Street & Hendrick Drive LOS Results

	AM Pea	ık Hour	PM Pea	ak Hour
Scenario	Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
2022 Existing				
Northbound Approach	10.8	В	11.4	В
Eastbound Left	7.5	Α	7.7	Α
Westbound Left	7.8	Α	7.8	Α
Southbound Approach	12.6	В	15.7	С
2025 Background				
Northbound Approach	11.3	В	12.3	В
Eastbound Left	7.6	Α	7.8	Α
Westbound Left	7.9	Α	7.8	Α
Southbound Approach	14.3	В	19.9	С
2025 Background Plus Project				
Northbound Approach	11.3	В	12.6	В
Eastbound Left	7.6	Α	7.8	Α
Westbound Left	7.9	Α	7.8	Α
Southbound Approach	14.8	В	22.1	С
2045 Background				
Northbound Approach	12.2	В	13.8	В
Eastbound Left	7.6	Α	7.9	Α
Westbound Left	8.0	Α	8.0	Α
Southbound Approach	16.5	С	28.0	D
2045 Background Plus Project				
Northbound Approach	12.3	В	14.2	В
Eastbound Left	7.6	Α	8.0	Α
Westbound Left	8.0	Α	8.0	Α
Southbound Approach	17.2	С	33.6	D

Main Street and SH-133

The existing intersection of Main Street and SH-133 is a roundabout intersection. The northbound and southbound SH-133 approaches consist of two lanes, while the eastbound and westbound Main Street approaches consist of one lane. With the existing configuration, this intersection currently operates with LOS B during both the morning and afternoon peak hours. With the existing lane configurations and the addition of all the surrounding developments and this project traffic, this intersection is expected to operate acceptably with LOS C or better during the morning and afternoon peak hours in 2025.

By 2045, this roundabout intersection may operate overall with LOS E and with failing approaches prior to the addition of project traffic. Therefore, the eastbound and westbound approaches may need to include separate 100-foot right turn lanes. With this improvement in 2045, this intersection and all approaches are expected to operate acceptably during the peak hours. However, it is important to recognize that this is the twenty-year long-term horizon and these future traffic volumes may not be realized. Future study is recommended when this redevelopment occurs to determine if these future traffic volumes are realized. **Table 5** provides the results of the level of service at this intersection.

Table 5 - Main Street & SH-133 LOS Results

AM Pea	k Hour	PM Pea	ak Hour
Delay (sec/veh)	LOS	Delay (sec/veh)	LOS
11.1	В	13.5	В
9.9	Α	10.9	В
12.5	В	16.8	С
8.8	Α	12.3	В
17.5	С	18.5	С
14.0	В	21.5	С
11.6	В	14.6	В
16.9	С	32.1	D
9.7	Α	16.2	С
25.4	D	36.3	E
14.7	В	24.9	С
11.0	В	15.0	С
			C -
			E C
			E
			E
			C
-			F
			D
	<u> </u>		F
			D
			D
			С
			D
			E
	Delay (sec/veh) 11.1 9.9 12.5 8.8 17.5 14.0 11.6 16.9 9.7 25.4	(sec/veh) LOS 11.1 B 9.9 A 12.5 B 8.8 A 17.5 C 14.0 B 11.6 B 16.9 C 9.7 A 25.4 D 14.7 B 11.9 B 17.8 C 9.9 A 27.2 D 26.0 D 16.4 C 29.7 D 12.7 B 69.4 F 16.8 C 17.0 C 15.1 C 13.0 B	Delay (sec/veh) LOS Delay (sec/veh) 11.1 B 13.5 9.9 A 10.9 12.5 B 16.8 8.8 A 12.3 17.5 C 18.5 14.0 B 21.5 11.6 B 14.6 16.9 C 32.1 9.7 A 16.2 25.4 D 36.3 14.7 B 24.9 11.9 B 15.8 17.8 C 38.7 9.9 A 17.4 27.2 D 45.5 26.0 D 49.1 16.4 C 22.2 29.7 D 89.7 12.7 B 27.8 69.4 F 112.4 16.8 C 29.6 17.0 C 26.2 15.1 C 20.2 13.0 B

^{# =} Addition of EB and WB Right Turn Lanes

5.3 CDOT Turn Bay Length Analysis

The threshold for requiring an access permit along Colorado Department of Transportation (CDOT) roadways occurs when project traffic is anticipated to increase the existing access traffic volumes by more than 20 percent. Based on traffic projections, the addition of project traffic on the west leg of Hendrick Drive at SH-133 is anticipated to increase existing traffic by more than 20 percent. Therefore, access permits are anticipated to be needed at Hendrick Drive at SH-133 as development occurs.

SH-133 is categorized as an NR-B: Non-Rural Arterial roadway with a 35 miles per hour speed limit, as such turn lanes requirements are to be designed per the State Highway Access Code (SHAC). According to the State Highway Access Code for category NR-B roadways with a speed limit of less than or equal to 40 miles per hour the turn lane warrants are as follows:

- A left turn lane with storage plus taper is required for any access with a projected peak hour left ingress turning volume greater than 25 (vph).
- A right turn lane with storage length plus taper is required for any access with a projected peak hour right ingress turning volume greater than 50 (vph).
- An acceleration lane is generally not required.

Based on the 2045 traffic volume projections, turn lane requirements at Hendrick Drive intersections along SH-133 are as follows:

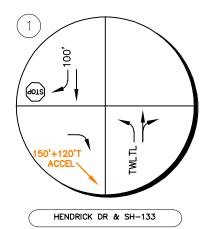
- A northbound left turn deceleration lane is warranted with the projected left turn volumes being 142 vph and the threshold for requiring a left turn deceleration lane being 25 vph. This left turn lane exists today as a two-way left turn lane. Therefore, no modifications are needed for the existing northbound left turn lane.
- A southbound right turn deceleration lane is warranted with the projected right turn volume being 66 vph and the threshold for requiring a right turn deceleration lane being 50 vph. However, a southbound right turn lane currently exists and provides a length of 100 feet plus 120-foot (10 to 1) taper. Therefore, this meets current CDOT standards and no modification is needed.
- Based on the SH-133 roadway classification of NR-B with a 35 mile per hour posted speed limit, an acceleration lane is generally not required; however, it was found that one may be needed operationally by the 2045 long term horizon if future traffic projections are

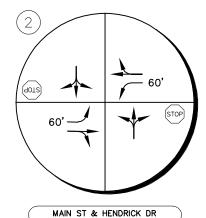
realized. Therefore, based on the speed limit and classification, an acceleration lane of 150 feet in length plus 120-foot taper may be considered if needed in the future.

5.4 Vehicle Queuing Analysis

A vehicle queuing analysis was conducted for the study area intersections. The queuing analysis was performed using Synchro presenting the results of the 95th percentile queue lengths. Results are shown in the following **Table 6** with calculations provided within the level of service operational sheets of **Appendix D** for unsignalized intersections and **Appendix E** for signalized intersections.

Table 6 - Turn Lane Queuing Analysis Results


	Existing Turn Lane Length	2025 Calculated Queue	2025 Recommende d	2045 Calculated Queue	2045 Recommended
Intersection Turn Lane	(feet)	(feet)	Length (feet)	(feet)	Length (feet)
Hendrick Dr & SH-133					
Northbound Left	TWLTL	25'	TWLTL	25'	TWLTL
Eastbound Right	200'	125'	200'	0'	200'
Main St & Hendrick Dr					
Northbound Approach	С	25'	С	50'	С
Eastbound Left	60'	25'	60'	25'	60'
Westbound Left	60	25'	60	25'	60
Southbound Approach	С	75'	С	125'	С
Main St & SH-133					
Northbound Approach	275'	83'	275'	151'	275'
Westbound Approach	150'	247'	150'	-	150'
Westbound Left/Through	-	-	-	71'	150'
Westbound Right	-	-	-	76'	100'
Southbound Approach	650'	215'	650'	483'	650'
Eastbound Approach	325'	209'	325'	-	325'
Eastbound Left/Through	-	-	-	160'	325'
Eastbound Right	-	ı	ı	32'	100'


DNE = Does Not Exist; C = Continuous; Red Text = Storage Deficiency; Blue Text = Recommendation

As shown, all queues fall within the existing storage lengths throughout the long term 2045 horizon with exception of the Subway access along the east leg of Main Street restricting the westbound approach to the SH-133 roundabout. At times, this driveway along the south side of Main Street is likely blocked from a westbound queue to the adjacent roundabout. Of note, 100-foot eastbound and westbound right turn lanes may be needed at the Main Street and SH-133 roundabout intersection in the future. This improvement reduces the queue on the approach to approximately 75 feet, which means that the Subway access should be clear of a queue when this improvement is implemented.

5.5 Improvement Summary

Based on the results of the operational and queuing analysis, the existing street network as constructed is anticipated accommodate full buildout of the ANB Bank – Carbondale mixed use building development successfully without the need for any additional offsite improvements in the 2025 near-term horizon. However, an acceleration lane along southbound SH-133 from Hendrick Drive as well as eastbound and westbound right turn lanes at the Main Street/SH-133 roundabout may be needed The recommended lane configurations and control for 2045 is illustrated in **Figure 10.**

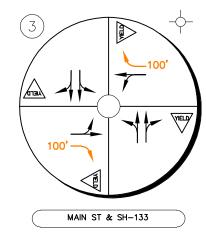


FIGURE 10

ANB BANK — CARBONDALE CARBONDALE, COLORADO 2045 RECOMMENDED GEOMETRY AND CONTROL

LEGEND

Study Area Key Intersection

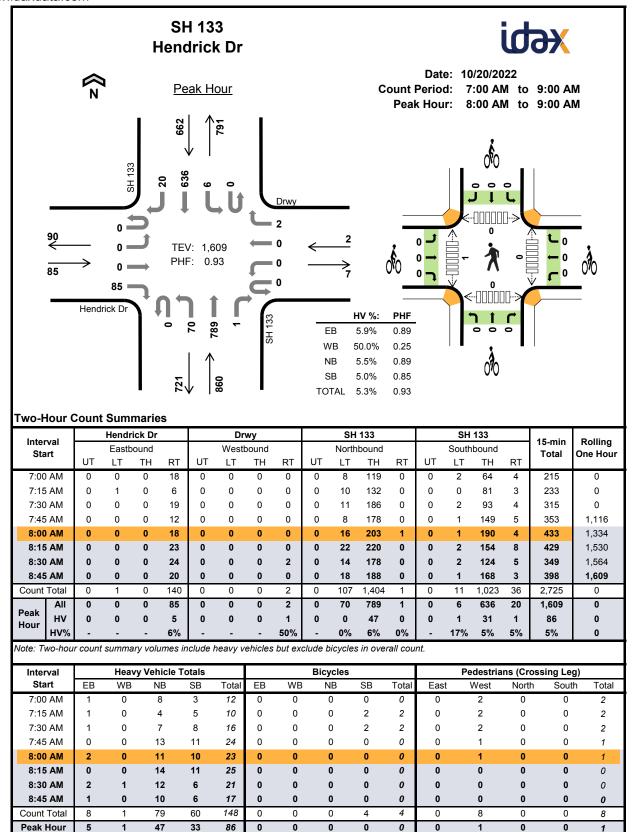
Roundabout

Yield Controlled Approach

Stop Controlled Approach

-100' Turn Lane Length (feet)

6.0 CONCLUSIONS AND RECOMMENDATIONS

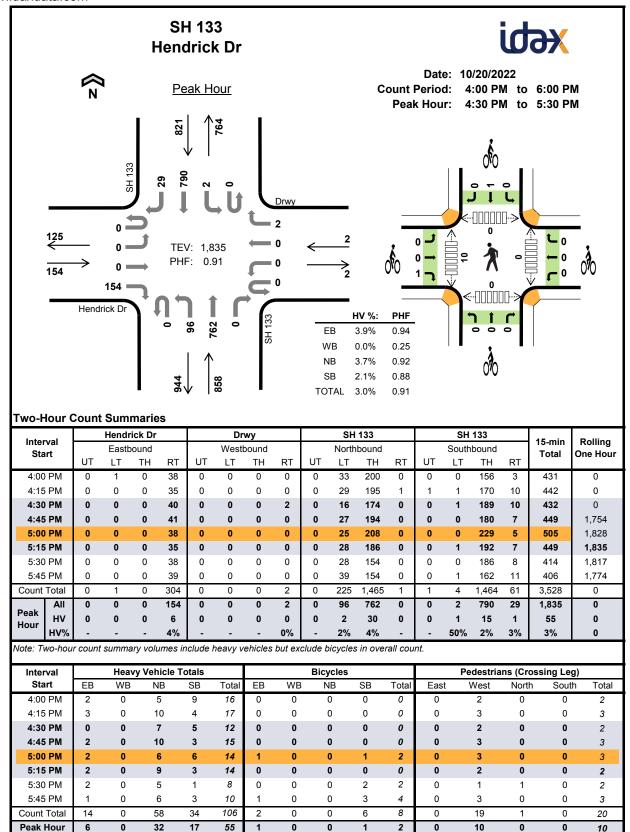

Based on the analysis presented in this report, Kimley-Horn believes ANB Bank - Carbondale will be successfully incorporated into the existing and future roadway network. Analysis of the existing street network, the proposed project development, and expected traffic volumes resulted in the following recommendations:

- It is anticipated that CDOT will require an access permit at the intersection of SH-133 and Hendrick Drive with development of the project due to project traffic volumes increasing the existing and previously permitted volumes by more than 20 percent.
- The existing street network as constructed today will accommodate full buildout of the ANB Bank – Carbondale mixed use building development successfully without the need for any additional offsite improvements in the 2025 near-term horizon.
- By 2045, the eastbound right turn from Hendrick Drive to southbound SH-133 may need to
 operate with free movements by the construction of an acceleration lane along southbound
 SH-133. Therefore, an acceleration lane with 150 feet of length and a 120-foot taper would
 need to be provided along southbound SH-133 based on the CDOT SHAC for the 35-mile per
 hour posted speed limit.
- By 2045, the eastbound and westbound approaches of the Main Street and SH-133
 roundabout may need to include separate 100-foot right turn lanes. Traffic volumes should be
 monitored in the future at this intersection to determine if and when this improvement is
 necessary.
- Any on-site and off-site signing and striping improvements should be incorporated into the Civil Drawings, and conform to Town of Carbondale and CDOT standards, as well as the Manual on Uniform Traffic Control Devices – 2009 Edition (MUTCD).

APPENDICES

APPENDIX A

Intersection Count Sheets

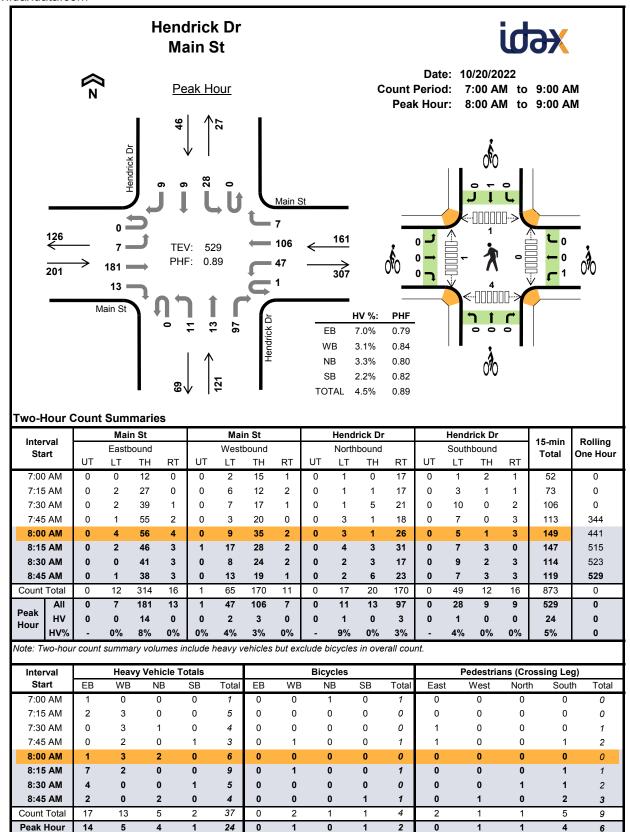


lute muel	Hendrick Dr				Drwy					SH	133			SH	133	15 min	Rolling	
Interval Start		Eastb	ound			West	bound			North	bound			South	bound		15-min Total	One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	Ono mou
7:00 AM	0	0	0	1	0	0	0	0	0	0	8	0	0	0	3	0	12	0
7:15 AM	0	0	0	1	0	0	0	0	0	0	4	0	0	0	5	0	10	0
7:30 AM	0	0	0	1	0	0	0	0	0	0	7	0	0	0	8	0	16	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	13	0	0	0	11	0	24	62
8:00 AM	0	0	0	2	0	0	0	0	0	0	11	0	0	0	10	0	23	73
8:15 AM	0	0	0	0	0	0	0	0	0	0	14	0	0	0	11	0	25	88
8:30 AM	0	0	0	2	0	0	0	1	0	0	12	0	0	1	4	1	21	93
8:45 AM	0	0	0	1	0	0	0	0	0	0	10	0	0	0	6	0	17	86
Count Total	0	0	0	8	0	0	0	1	0	0	79	0	0	1	58	1	148	0
Peak Hour	0	0	0	5	0	0	0	1	0	0	47	0	0	1	31	1	86	0

Two-Hour Count Summaries - Bikes

Interval	Н	endrick l	Dr		Drwy			SH 133			SH 133		45 min	Dalling
Start	E	Eastboun	d	٧	Vestbour	ıd	N	lorthbour	nd	S	outhbour	nd	15-min Total	Rolling One Hour
- Ciui	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	2	0	2	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	2	0	2	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	4
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	4
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	4	0	4	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

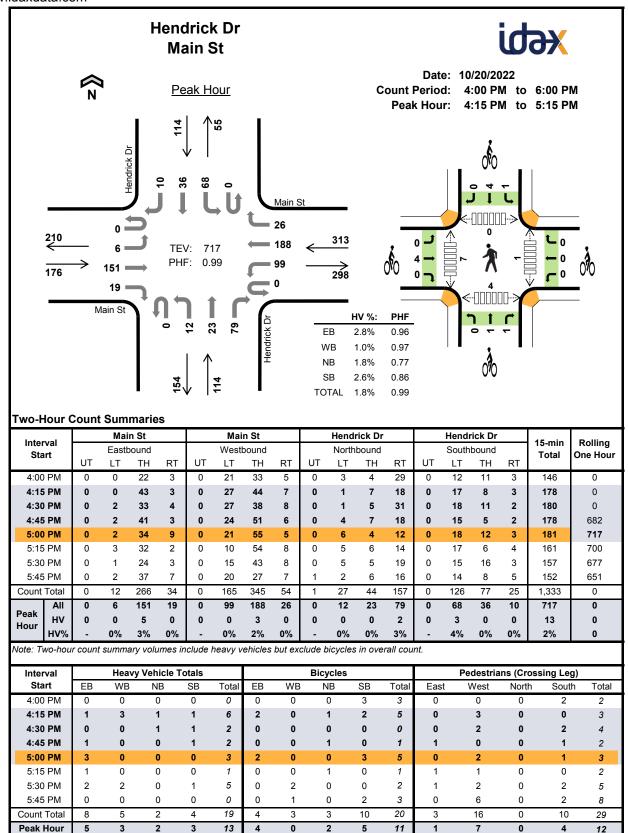
Note: U-Turn volumes for bikes are included in Left-Turn, if any.



Interval	Hendrick Dr			Drwy					SH	133			SH	133	15-min	Rolling		
Start		Eastb	ound			Westl	bound			North	bound			Southbound				One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	C.I.O I IOUI
4:00 PM	0	0	0	2	0	0	0	0	0	1	4	0	0	0	9	0	16	0
4:15 PM	0	0	0	3	0	0	0	0	0	0	10	0	0	0	4	0	17	0
4:30 PM	0	0	0	0	0	0	0	0	0	1	6	0	0	0	5	0	12	0
4:45 PM	0	0	0	2	0	0	0	0	0	1	9	0	0	0	3	0	15	60
5:00 PM	0	0	0	2	0	0	0	0	0	0	6	0	0	0	6	0	14	58
5:15 PM	0	0	0	2	0	0	0	0	0	0	9	0	0	1	1	1	14	55
5:30 PM	0	0	0	2	0	0	0	0	0	0	5	0	0	0	1	0	8	51
5:45 PM	0	0	0	1	0	0	0	0	0	0	6	0	0	0	3	0	10	46
Count Total	0	0	0	14	0	0	0	0	0	3	55	0	0	1	32	1	106	0
Peak Hour	0	0	0	6	0	0	0	0	0	2	30	0	0	1	15	1	55	0

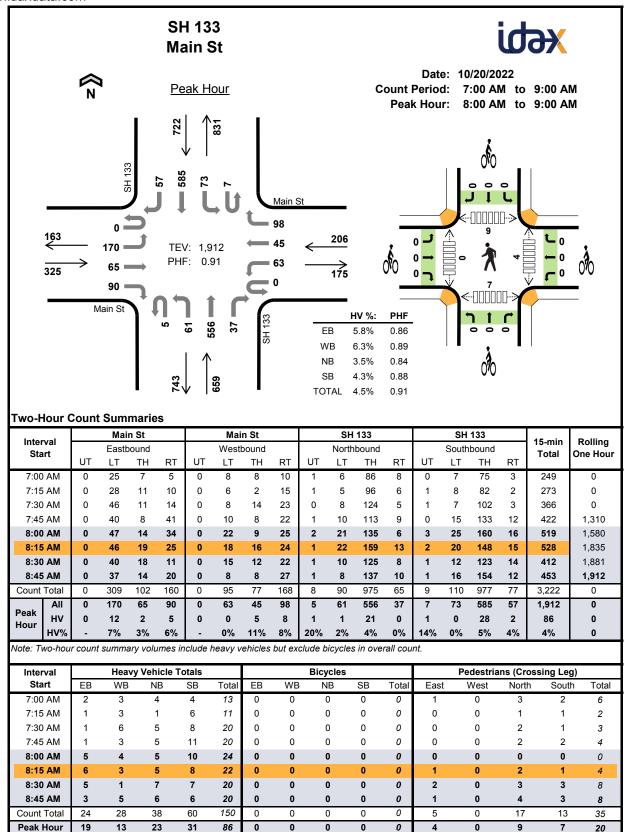
Two-Hour Count Summaries - Bikes

Interval	Н	endrick	Dr		Drwy			SH 133			SH 133		15-min	Dalling
Interval Start	E	Eastboun	d	Westbound			N	Northbound			outhbour	Total	Rolling One Hour	
Otare	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT	i otai	0.101.104.1
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM	0	0	1	0	0	0	0	0	0	0	1	0	2	2
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	2
5:30 PM	0	0	0	0	0	0	0	0	0	0	2	0	2	4
5:45 PM	0	0	1	0	0	0	0	0	0	0	3	0	4	8
Count Total	0	0	2	0	0	0	0	0	0	0	6	0	8	0
Peak Hour	0	0	1	0	0	0	0	0	0	0	1	0	2	0


Note: U-Turn volumes for bikes are included in Left-Turn, if any.

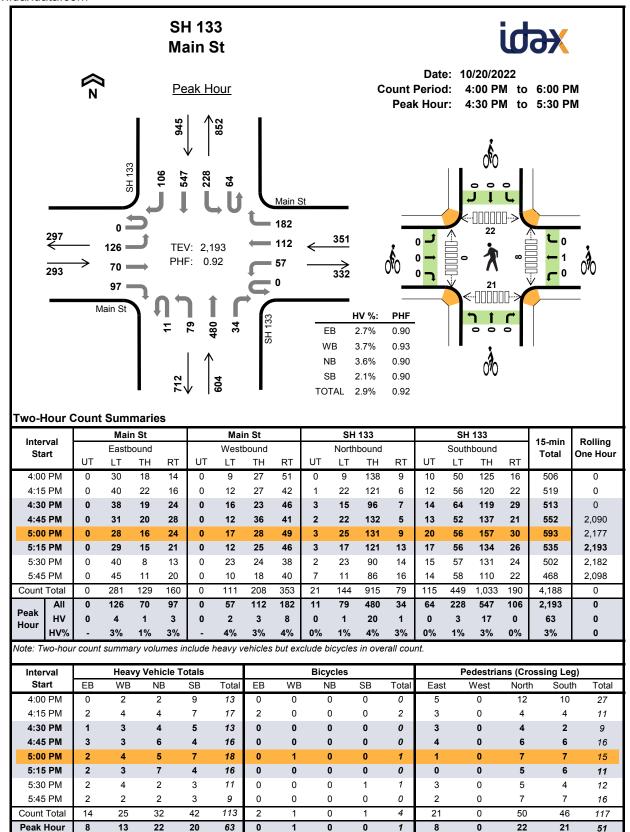
Interval		Mai	n St			Mai	n St			Hend	rick Dr			Hendi	ick Dr		15-min	Rolling
Start		Eastb	ound			West	bound			North	bound			South	bound		Total	One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	Ono mou
7:00 AM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
7:15 AM	0	0	2	0	0	0	2	1	0	0	0	0	0	0	0	0	5	0
7:30 AM	0	0	0	0	0	1	2	0	0	0	0	1	0	0	0	0	4	0
7:45 AM	0	0	0	0	0	0	2	0	0	0	0	0	0	1	0	0	3	13
8:00 AM	0	0	1	0	0	1	2	0	0	0	0	2	0	0	0	0	6	18
8:15 AM	0	0	7	0	0	1	1	0	0	0	0	0	0	0	0	0	9	22
8:30 AM	0	0	4	0	0	0	0	0	0	0	0	0	0	1	0	0	5	23
8:45 AM	0	0	2	0	0	0	0	0	0	1	0	1	0	0	0	0	4	24
Count Total	0	0	17	0	0	3	9	1	0	1	0	4	0	2	0	0	37	0
Peak Hour	0	0	14	0	0	2	3	0	0	1	0	3	0	1	0	0	24	0

Interval		Main St			Main St		Н	endrick	Dr	Н	endrick	Dr	15-min	Dalling
Start	E	Eastboun	d	٧	Vestbour	ıd	N	lorthbour	nd	S	outhbour	nd	Total	Rolling One Hour
- Cian c	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		0.101.104.1
7:00 AM	0	0	0	0	0	0	0	1	0	0	0	0	1	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	1	0	0	0	0	0	0	1	2
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
8:15 AM	0	0	0	1	0	0	0	0	0	0	0	0	1	2
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	2
8:45 AM	0	0	0	0	0	0	0	0	0	0	1	0	1	2
Count Total	0	0	0	1	0	1	0	1	0	0	1	0	4	0
Peak Hour	0	0	0	1	0	0	0	0	0	0	1	0	2	0


Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Interval		Mai	n St			Mai	n St			Hend	ick Dr			Hend	rick Dr		15-min	Rolling
Start		Eastb	oound			Westl	bound			North	bound			South	bound		Total	One Hour
-	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	. • • • •	0.10 1.10
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	0	1	0	0	0	3	0	0	0	0	1	0	1	0	0	6	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	2	0
4:45 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	2	10
5:00 PM	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0	0	3	13
5:15 PM	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	8
5:30 PM	0	0	2	0	0	0	2	0	0	0	0	0	0	1	0	0	5	11
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
Count Total	0	0	8	0	0	0	5	0	0	0	0	2	0	4	0	0	19	0
Peak Hour	0	0	5	0	0	0	3	0	0	0	0	2	0	3	0	0	13	0

Interval		Main St			Main St		Н	endrick	Dr	Н	endrick	Dr	15-min	Dalling
Start	E	Eastboun	d	٧	Vestbour	ıd	N	lorthbour	nd	S	outhbour	nd	Total	Rolling One Hour
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		0.101.104.1
4:00 PM	0	0	0	0	0	0	0	0	0	2	1	0	3	0
4:15 PM	0	2	0	0	0	0	0	0	1	0	2	0	5	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	1	0	0	0	0	1	9
5:00 PM	0	2	0	0	0	0	0	0	0	1	2	0	5	11
5:15 PM	0	0	0	0	0	0	0	1	0	0	0	0	1	7
5:30 PM	0	0	0	0	2	0	0	0	0	0	0	0	2	9
5:45 PM	0	0	0	0	1	0	0	0	0	0	2	0	3	11
Count Total	0	4	0	0	3	0	0	2	1	3	7	0	20	0
Peak Hour	0	4	0	0	0	0	0	1	1	1	4	0	11	0


Note: U-Turn volumes for bikes are included in Left-Turn, if any.

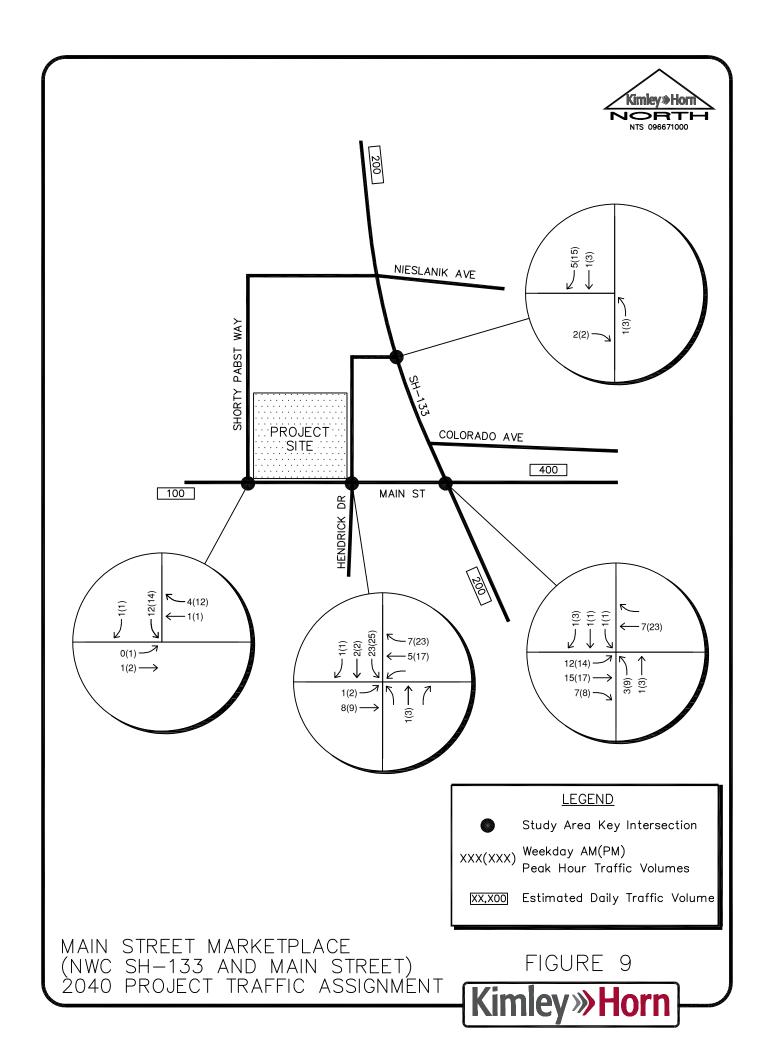
Interval		Mai	n St			Mai	n St			SH	133			SH	133		15-min	Rolling
Start		Eastb	ound			Westl	bound			North	bound			South	bound		Total	One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	Ono mou
7:00 AM	0	2	0	0	0	0	0	3	0	0	4	0	0	0	4	0	13	0
7:15 AM	0	1	0	0	0	0	1	2	0	0	1	0	0	2	4	0	11	0
7:30 AM	0	1	0	0	0	0	1	5	0	2	3	0	0	1	6	1	20	0
7:45 AM	0	1	0	0	0	0	1	2	0	0	5	0	0	0	9	2	20	64
8:00 AM	0	3	0	2	0	0	1	3	1	1	3	0	1	0	7	2	24	75
8:15 AM	0	5	0	1	0	0	2	1	0	0	5	0	0	0	8	0	22	86
8:30 AM	0	3	1	1	0	0	0	1	0	0	7	0	0	0	7	0	20	86
8:45 AM	0	1	1	1	0	0	2	3	0	0	6	0	0	0	6	0	20	86
Count Total	0	17	2	5	0	0	8	20	1	3	34	0	1	3	51	5	150	0
Peak Hour	0	12	2	5	0	0	5	8	1	1	21	0	1	0	28	2	86	0

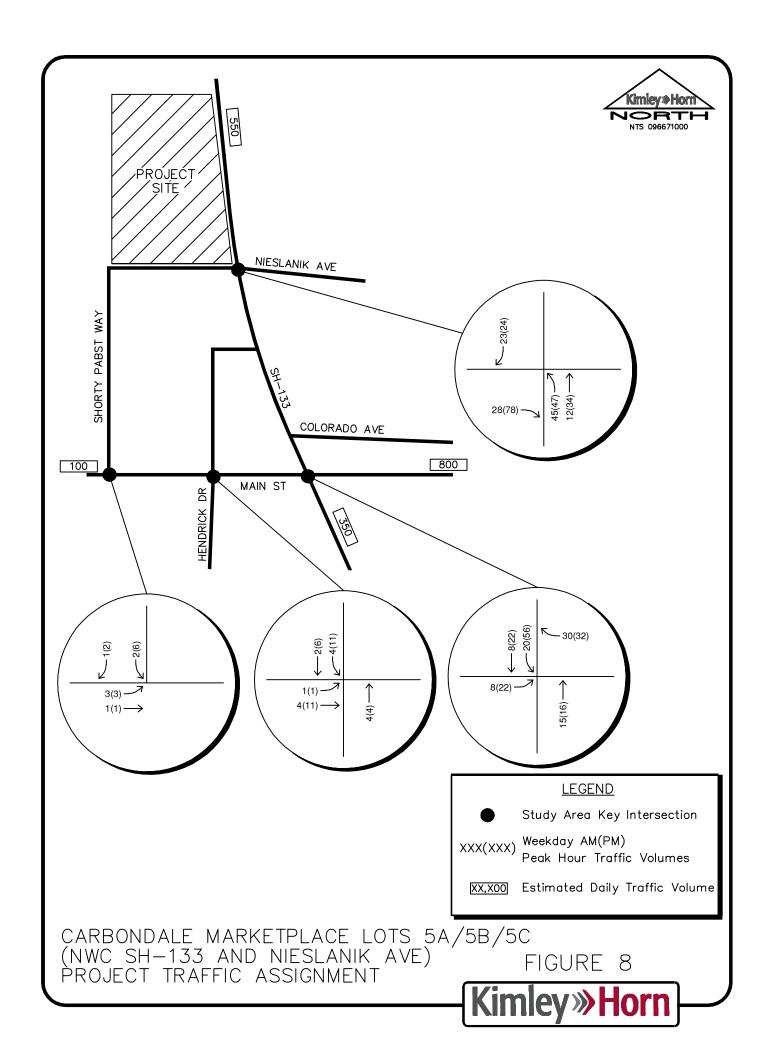
Interval		Main St			Main St			SH 133			SH 133		45 min	Dalling
Start	E	Eastboun	d	٧	Vestbour	ıd	N	Northbour	nd	S	outhbour	nd	15-min Total	Rolling One Hour
- Cian c	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		0.101.104.1
7:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Count Total	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peak Hour	0	0	0	0	0	0	0	0	0	0	0	0	0	0

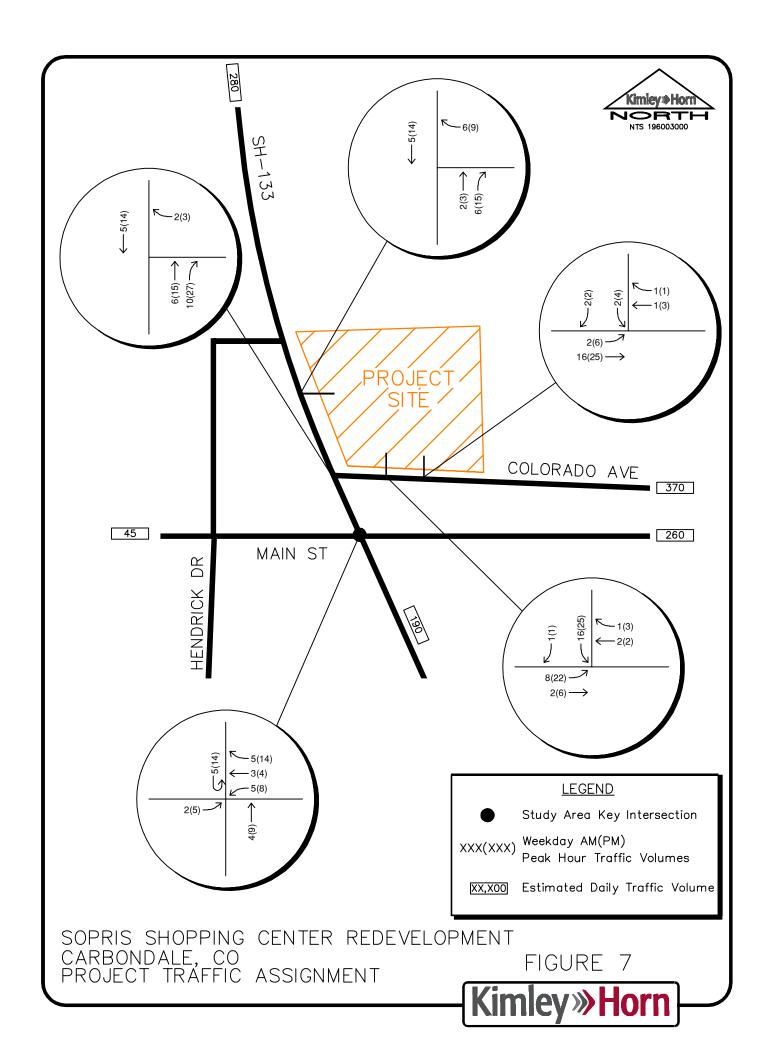
Note: U-Turn volumes for bikes are included in Left-Turn, if any.

Interval		Mai	n St			Mai	n St			SH	133			SH	133		15-min	Rolling
Start		Eastb	ound			Westl	bound			North	bound			South	bound		Total	One Hour
Otart	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	UT	LT	TH	RT	Total	Ono mour
4:00 PM	0	0	0	0	0	0	0	2	0	0	2	0	0	4	5	0	13	0
4:15 PM	0	1	1	0	0	1	1	2	0	1	3	0	0	3	4	0	17	0
4:30 PM	0	0	0	1	0	0	0	3	0	0	4	0	0	1	4	0	13	0
4:45 PM	0	2	0	1	0	0	2	1	0	0	6	0	0	0	4	0	16	59
5:00 PM	0	1	0	1	0	2	0	2	0	1	4	0	0	2	5	0	18	64
5:15 PM	0	1	1	0	0	0	1	2	0	0	6	1	0	0	4	0	16	63
5:30 PM	0	2	0	0	0	0	3	1	0	0	2	0	0	1	2	0	11	61
5:45 PM	0	2	0	0	0	0	0	2	1	0	1	0	0	2	1	0	9	54
Count Total	0	9	2	3	0	3	7	15	1	2	28	1	0	13	29	0	113	0
Peak Hour	0	4	1	3	0	2	3	8	0	1	20	1	0	3	17	0	63	0

Interval		Main St			Main St			SH 133			SH 133		15-min	Rolling
Start	Е	Eastboun	d	٧	Vestbour	ıd	N	lorthbour	nd	S	outhbour	nd	Total	One Hour
	LT	TH	RT	LT	TH	RT	LT	TH	RT	LT	TH	RT		
4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM	0	2	0	0	0	0	0	0	0	0	0	0	2	0
4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	2
5:00 PM	0	0	0	0	1	0	0	0	0	0	0	0	1	3
5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1
5:30 PM	0	0	0	0	0	0	0	0	0	1	0	0	1	2
5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	2
Count Total	0	2	0	0	1	0	0	0	0	1	0	0	4	0
Peak Hour	0	0	0	0	1	0	0	0	0	0	0	0	1	0


Note: U-Turn volumes for bikes are included in Left-Turn, if any.


APPENDIX B


Future Traffic Projections

CDOT OTIS Growth Projections: ANB Bank Carbondale

R	OUTE	REFPT	ENDREFPT	LENGTH	UPDATEYR	AADT	YR20FACTOR	Annual Growth %	DHV	DD	LOCATION
1	33A	67.799	68.821	1.043	2021	17000	1.2	0.92%	11.5	57	ON SH 133 S/O SH 82 CARBONDALE

APPENDIX C

Trip Generation Worksheets

Project ANB Bank Carbondale Subject Trip Generation for Multifamily Ho Designed by MAG Date Checked by Date	Ousing (Low-Rise) October 26, 2022 Sheet No. 096671006 of
TRIP GENERATION MANUAL TECHNIQUES	
ITE Trip Generation Manual 11th Edition, Avera	ge Rate Equations
Land Use Code - Multifamily Housing (Low-Rise	e) (220)
Independent Variable - Dwelling Units (X)	
X = 17 T = Average Vehicle Trip Ends	
Peak Hour of Adjacent Street Traffic, One Ho	our Between 7 and 9 a.m. (200 Series Page 255)
Average Weekday (T) = 0.40 (X) (T) = 0.40 * (17.0)	Directional Distribution: 24% ent. 76% exit. T = 7 Average Vehicle Trip Ends 2 entering 5 exiting
	2 + 5 = 7
Peak Hour of Adjacent Street Traffic, One Ho	our Between 4 and 6 p.m. (200 Series Page 256)
Average Weekday (T) = 0.51(X) (T) = 0.51 * (17.0)	Directional Distribution: 63% ent. 37% exit. T = 9 Average Vehicle Trip Ends 6 entering 3 exiting
	6 + 3 = 9
Weekday (200 Series Page 254)	
Average Weekday (T) = 6.74 (X) (T) = 6.74 * (17.0)	Directional Distribution: 50% entering, 50% exiting T = 116 Average Vehicle Trip Ends 58 entering 58 exiting 58 + 58 = 116

	Generation for General		0 1.1.11.	000074000
Designed by Checked by	MAG L	Date October 26, 202.	Sheet No.	096671006 1 of 1
TRIP GENERATION	ON MANUAL TECHNIC	QUES		
ITE Trip Generation	<u>n Manual</u> 11th Edition,	Average Rates		
Land Use Code - (General Office Building	(710)		
SF = 4.376	ble - 1000 Square Feet 1,376 5 Vehicle Trip Ends	(X)		
Peak Hour of Adj	acent Street Traffic, O	ne Hour Between 7 and 9	9 a.m. (700 Series Pa	age 710 <u>)</u>
(T) = 1.52 (X) (T) = 1.52 *	(4.4)		bution: 88% (Average Vehicle Ti g 1 exitir	rip Ends
		6 +	1 = 7	
Peak Hour of Adj	acent Street Traffic, O	ne Hour Between 4 and 6	8 p.m. (700 Series P	age 711 <u>)</u>
		Directional Distri		
	(4.4)	T = 6 1 enterinç	Average Vehicle Ti g 5 exitir	
	(4.4)			
(T) = 1.44 (X) (T) = 1.44 * Weekday (700 Se	` '	1 enterinç	g 5 exitir	
(T) = 1.44 *	` '	1 enterino 1 + Directional Distri	g 5 exitin 5 = 6 Substitution: 50% of Average Vehicle Ti	ent. 50% exit. rip Ends

Kimley » Horn

Project	ANB Bank Carbor	ndale			
Subject	Trip Generation for	r Strip Retail Plaz	za (<40k)		
Designed by	MAG	Date	October 26, 2022	Job No.	096671006
Checked by		Date		Sheet No.	of

TRIP GENERATION MANUAL TECHNIQUES

ITE <u>Trip Generation Manual</u> 11th Edition, Average Rate Equations

Land Use Code - Strip Retail Plaza (<40k) (822)

Independent Variable - 1000 Square Feet Gross Leasable Area (X)

Gross Leasable Area = 4,799 Square Feet

X = 4.799

T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (800 Series Page 230)

Average Weekday Directional Distribution: 60% ent. 40% exit. T = 2.36 * (X) T = 11 Average Vehicle Trip Ends T = 2.36 * 4.799 7 entering 4 exiting

7 + 4 = 11

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (800 Series page 231)

50% ent. 50% Directional Distribution: Average Weekday exit. T = 6.59 * (X)T = 32 Average Vehicle Trip Ends T = 6.59 *4.799 16 enterina 16 exiting 32 16 16

Weekday (800 Series page 229)

Average Weekday T = 54.45 * (X) Directional Distribution: 50% entering, 50% exiting T = 54.45 * (X) T = 262 Average Vehicle Trip Ends T = 54.45 * (X) Average Vehicle Trip Ends T = 131 entering T = 131 exiting

131 + 131 = 262

Non Pass-By Trip Volumes (Per ITE Trip Generation Manual, 11th Edition)

AM Peak Hour	=	60% Non-I	Pass By	PM Peak Hour = 60% Non-Pass By
	IN	Out	Total	Pass-By Rates from ITE 821
AM Peak	4	2	7	PM Peak Hour Rate Applied to AM Peak Hour
PM Peak	10	10	20	
Daily	79	79	158	PM Peak Hour Rate Applied to Daily

Pass-By Trip Volumes (Per ITE Trip Generation Manual, 11th Edition)

. 400 by 111p t	0101110	<u> </u>	<u> </u>	ioration manaan ritir i	<u> </u>		
AM Peak Hour	= 40)% Pass	s By	PM Peak Hour =	40%	Pass By	
	IN	Out	Total				
AM Peak	3	2	5	PM Peak Hour Rate	Applied	to AM Peak Ho	ur
PM Peak	6	6	13				
Daily	52	52	104	PM Peak Hour Rate	Applied	to Daily	

Kimley»Horn

 Project
 ANB Bank Carbondale

 Subject
 Trip Generation for Walk-in Bank

 Designed by
 MAG
 Date
 October 26, 2022
 Job No.
 096671006

 Checked by
 Date
 Sheet No.
 of

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 11th Edition, Average Rates

Land Use Code - Walk-in Bank (911)

Independent Variable - 1000 Square Feet (X)

SF = 3,271X = 3.271

T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series Page 592)

18 + 22 = 40

Weekday

*Assumed to be 10 times the PM Peak Hour

Directional Distribution: 50% ent. 50% T = 398 Average Vehicle Trip Ends

(T) = 10 * PM Peak Hour (39.7) 199 entering 199 exiting

199 + 199 = 398

exit.

Kimley » Horn

Project	ANB Bank Carbon	dale			
Subject	Trip Generation for	High Turnover Si	t-Down Restaurant		
Designed by	MAG	Date	October 26, 2022	Job No.	096671006
Checked by		Date		Sheet No.	of

TRIP GENERATION MANUAL TECHNIQUES

ITE Trip Generation Manual 11th Edition, Average Rates

Land Use Code - High Turnover Sit-Down Restaurant (932)

Independent Variable - 1000 Square Feet (X)

SF = 2,290 X = 2.290

T = Average Vehicle Trip Ends

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a.m. (900 Series Page 674)

		Directiona	al Distribution:	55% ent.	45%	exit.
(T) = 9.57 (X)		T =	22 Average	Vehicle Trip E	Ends	
(T) = 9.57 *	(2.3)	12	entering 1	0 exiting		
		40	. 40	00		

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m. (900 Series Page 674)

		Directio	nal Distribution:	61%	ent.	39%	exit.
(T) = 9.05 (X)		T =	21 Average	Vehicle	Trip En	ds	
(T) = 9.05 *	(2.3)	13	entering	8 exi	iting		
		12	т о –	21			

Weekday (900 Series Page 673)

		Directio	nal Distribution:	50%	ent. 50°	% exit.
(T) = 107.20 (X)		T =	246 Averag	e Vehicle	Trip Ends	
(T) = 107.20 *	(2.3)	123	entering	123 exi	ting	

Non Pass-By Trip Volumes (Per ITE Trip Generation Manual, 11th Edition)

AM Peak Ho	ur =	57% Nor	-Pass By	PM Peak Hour = 57% Non-Pass By
	IN	Out	Total	
AM Peak	7	6	13	PM Peak Hour Rate Applied to AM Peak Hou
PM Peak	7	4	11	
Daily	70	70	140	PM Peak Hour Rate Applied to Daily

Pass-By Trip Volumes (Per ITE Trip Generation Manual, 11th Edition)

AM Peak Hou	ır = 43	% Pas	s By	PM Peak Hour = 43% Pass By
	IN	Out	Total	
AM Peak	5	4	9	PM Peak Hour Rate Applied to AM Peak Hour
PM Peak	6	4	10	
Daily	53	53	106	PM Peak Hour Rate Applied to Daily

APPENDIX D

Intersection Analysis Worksheets

Intersection						
Int Delay, s/veh	1.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
	EDL					
Lane Configurations		7	ነ	700	†	7
Traffic Vol, veh/h	0	85	70	789	636	20
Future Vol, veh/h	0	85	70	789	636	20
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	0	100	-	-	150
Veh in Median Storag	je,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	5	5	5	5	5	5
Mymt Flow	0	91	75	848	684	22
IVIVIIIL I IOW	U	31	13	040	004	LL
Major/Minor	Minor2	ı	Major1	N	/lajor2	
Conflicting Flow All	_	684	706	0		0
Stage 1	_	-	-	-	_	-
Stage 2	_	_	_	_	_	_
Critical Hdwy		6.25	4.15		_	_
Critical Hdwy Stg 1	_	0.23	4.13	-	_	_
	-	_		-		
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	3.345		-	-	-
Pot Cap-1 Maneuver	0	444	878	-	-	-
Stage 1	0	-	-	-	-	-
Stage 2	0	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	-	444	878	-	-	-
Mov Cap-2 Maneuver		_	-	-	_	-
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	
Staye Z	<u>-</u>	-	-		_	-
Approach	EB		NB		SB	
HCM Control Delay, s			0.8		0	
HCM LOS	C		3.0			
TIOWI LOO	J					
Minor Lane/Major Mv	mt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		878	_		_	_
HCM Lane V/C Ratio		0.086		0.206	-	_
HCM Control Delay (s		9.5	_		_	_
HCM Lane LOS		9.5 A	_		_	_
	h)	0.3	-			
HCM 95th %tile Q(ve	11)	0.3	-	0.8	-	-

Intersection						
Int Delay, s/veh	2.6					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	LDL	T T	NDL	<u> </u>	<u>361</u>	7 July
Traffic Vol, veh/h	0	154	96	762	790	29
Future Vol, veh/h	0	154	96	762	790	29
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	Stop -	None		None	-	
Storage Length	_	0	100	-	_	150
Veh in Median Storage		-	100	0	0	-
Grade, %	0	_	_	0	0	<u>-</u>
Peak Hour Factor	91	91	91	91	91	91
		3	3			3
Heavy Vehicles, %	3			3	3	
Mvmt Flow	0	169	105	837	868	32
Major/Minor	Minor2	ľ	Major1	N	/lajor2	
Conflicting Flow All	-	868	900	0	-	0
Stage 1	-	-	-	-	_	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	6.23	4.13	_	_	_
Critical Hdwy Stg 1	_	-	-	_	_	_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	3.327	2 227	_	_	_
Pot Cap-1 Maneuver	0	350	751	_	_	_
Stage 1	0	-	-	_	_	_
Stage 2	0	_	_	_	_	_
Platoon blocked, %	U			_	_	_
Mov Cap-1 Maneuver	_	350	751		_	
Mov Cap-1 Maneuver	_	330	731	_	_	_
Stage 1	-	<u>-</u>	_	-	-	
•	_	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			1.2		0	
HCM LOS	С				•	
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		751	-	350	-	-
HCM Lane V/C Ratio		0.14	-	0.484	-	-
HCM Control Delay (s)	10.6	-	24.5	-	-
HCM Lane LOS		В	-	С	-	-
HCM 95th %tile Q(veh	1)	0.5	-	2.5	-	-

Abovement	Intersection						
Cane Configurations	Int Delay, s/veh	1.3					
Cane Configurations	Movement	FRI	FRR	NRI	NRT	SRT	SBR
Fraffic Vol, veh/h Future Vol,		LDL					
Future Vol, veh/h Conflicting Peds, #/hr Conflicting Length Conflicting Length Conflicting Flow All Conflicting Flow All Conflicting Flow All Conflicting Howy Conflicting H		0					
Conflicting Peds, #/hr O O O O O O O O O							
Sign Control Stop Stop Free Romona Storage Length - 0 100 - - 0 0 Grade, % 0 - - 0 0 0 Heavy Vehicles, % 5							
RT Channelized	•						_ 0
Storage Length							
Veh in Median Storage, # 0		-					
Grade, % 0 - - 0 0 Peak Hour Factor 93	Storage Length	-	0	100			150
Peak Hour Factor 93 94 741 228 Major/Minor Milor		e, # 0	-	-	0		-
Peak Hour Factor 93 94 741 228 Major/Minor Milor	Grade, %	0	-	-	0		-
Mount Flow 0 97 78 944 741 28 Major/Minor Minor2 Major1 Major2 Conflicting Flow All - 741 769 0 - 0 Stage 1 - - - - - - - Critical Hdwy - 6.25 4.15 - <	Peak Hour Factor	93	93	93	93	93	93
Mount Flow 0 97 78 944 741 28 Major/Minor Minor2 Major1 Major2 Conflicting Flow All - 741 769 0 - 0 Stage 1 - - - - - - - Critical Hdwy - 6.25 4.15 - <	Heavy Vehicles, %	5	5	5	5	5	5
Major/Minor Minor2 Major1 Major2 Conflicting Flow All - 741 769 0 - 0 0 Stage 1							28
Stage 1			O,	, 0	011		
Stage 1							
Stage 1 - - - - - - - - - - - - - - - - -	Major/Minor N	Minor2		Major1	N	∕/ajor2	
Stage 2	Conflicting Flow All	-	741	769	0	-	0
Stage 2	Stage 1	-	-	-	-	-	-
Critical Hdwy Stg 1	•	-	_	-	_	_	-
Critical Hdwy Stg 1		_	6.25	4.15	_	_	_
Critical Hdwy Stg 2	•	_		-	_	_	_
Follow-up Hdwy - 3.345 2.245			_	_	_		_
Stage 1		_	3 3/15	2 245	_		_
Stage 1 0 - - - Stage 2 0 - - - Platoon blocked, % - - - - Mov Cap-1 Maneuver - 411 832 - - Mov Cap-2 Maneuver - - - - - Stage 1 - - - - - Stage 2 - - - - - Approach EB NB SB HCM Control Delay, s 16.4 0.8 0 HCM LOS C Move Table 1 SBT SBF Capacity (veh/h) 832 - 411 - 411 - 412 - 411 - 413 - 411 - 414 - 414 - 414 - 415 - 415 - 416					-		
Stage 2 0 - - - Platoon blocked, % - - - Mov Cap-1 Maneuver - 411 832 - Mov Cap-2 Maneuver - - - - Stage 1 - - - - Stage 2 - - - - Approach EB NB SB HCM Control Delay, s 16.4 0.8 0 HCM LOS C Minor Lane/Major Mvmt NBL NBT EBLn1 SBT Capacity (veh/h) 832 - 411 - HCM Lane V/C Ratio 0.094 - 0.235 - HCM Control Delay (s) 9.8 - 16.4 - HCM Lane LOS A - C -				032	-		-
Platoon blocked, % Mov Cap-1 Maneuver			_	_	-		-
Mov Cap-1 Maneuver - 411 832 - - Mov Cap-2 Maneuver -		0	-	-	-	-	-
Mov Cap-2 Maneuver	-				-	-	-
Stage 1 - </td <td>Mov Cap-1 Maneuver</td> <td>-</td> <td>411</td> <td>832</td> <td>-</td> <td>-</td> <td>-</td>	Mov Cap-1 Maneuver	-	411	832	-	-	-
Stage 2 - </td <td>Mov Cap-2 Maneuver</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 2 - </td <td>Stage 1</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Stage 1	-	-	-	-	-	-
Approach EB NB SB HCM Control Delay, s 16.4 0.8 0 HCM LOS C Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBF Capacity (veh/h) 832 - 411 - HCM Lane V/C Ratio 0.094 - 0.235 - HCM Control Delay (s) 9.8 - 16.4 - HCM Lane LOS A - C -	9	-	-	-	-	-	-
## ACM Control Delay, s 16.4	J J .						
## ACM Control Delay, s 16.4							
Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBF Capacity (veh/h) 832 - 411 - HCM Lane V/C Ratio 0.094 - 0.235 - HCM Control Delay (s) 9.8 - 16.4 - HCM Lane LOS A - C -	Approach						
Minor Lane/Major Mvmt NBL NBT EBLn1 SBT SBF Capacity (veh/h) 832 - 411 - HCM Lane V/C Ratio 0.094 - 0.235 - HCM Control Delay (s) 9.8 - 16.4 - HCM Lane LOS A - C -	HCM Control Delay, s	16.4		0.8		0	
Capacity (veh/h) 832 - 411 - HCM Lane V/C Ratio 0.094 - 0.235 - HCM Control Delay (s) 9.8 - 16.4 - HCM Lane LOS A - C -	HCM LOS	С					
Capacity (veh/h) 832 - 411 - HCM Lane V/C Ratio 0.094 - 0.235 - HCM Control Delay (s) 9.8 - 16.4 - HCM Lane LOS A - C -							
Capacity (veh/h) 832 - 411 - HCM Lane V/C Ratio 0.094 - 0.235 - HCM Control Delay (s) 9.8 - 16.4 - HCM Lane LOS A - C -	Minor Long/Major Mym	~ t	NDI	NDT	EDI 51	CDT	CDD
HCM Lane V/C Ratio 0.094 - 0.235 - HCM Control Delay (s) 9.8 - 16.4 - HCM Lane LOS A - C -		nt					SBR
HCM Control Delay (s) 9.8 - 16.4 - C -						-	-
HCM Lane LOS A - C -				-		-	-
	HCM Control Delay (s))	9.8	-	16.4	-	-
HCM 95th %tile Q(veh) 0.3 - 0.9 -	HCM Lane LOS			-		-	-
	HCM 95th %tile Q(veh	1)	0.3	_	0.9	-	-

Intersection						
Int Delay, s/veh	3.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	LDL	T T	NDL	<u>ND1</u>	<u>361</u>	7 July
Traffic Vol, veh/h	0	161	102	878	909	45
Future Vol, veh/h	0	161	102	878	909	45
· · · · · · · · · · · · · · · · · · ·	0	0	0	0/0	0	40
Conflicting Peds, #/hr				Free	Free	Free
Sign Control RT Channelized	Stop -	Stop	Free	None		None
Storage Length	_	None 0	100		-	150
			100	-	0	
Veh in Median Storage	-	-		0		-
Grade, %	0	- 04	- 04	0	0	- 04
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	0	177	112	965	999	49
Major/Minor	Minor2	I	Major1	N	/lajor2	
Conflicting Flow All	-	999	1048	0	-	0
Stage 1	_	-	1070	-	_	-
Stage 2	_	_		_	_	_
Critical Hdwy	-	6.23	4.13	-	_	-
Critical Hdwy Stg 1		0.20	₸. 10	_	_	_
Critical Hdwy Stg 2	-	-	_	-	_	
Follow-up Hdwy	-	3.327	2 227	-	-	-
Pot Cap-1 Maneuver	-	294	660	-	-	_
	0	294	000	-	-	-
Stage 1		-	-	-		-
Stage 2	0	-	-	-	-	-
Platoon blocked, %		00.4	000	-	-	-
Mov Cap-1 Maneuver	-	294	660	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			1.2		0	
HCM LOS	D D		1.2		U	
HOW LOS	U					
Minor Lane/Major Mvm	nt _	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		660	_		-	_
HCM Lane V/C Ratio		0.17	_	0.602	-	_
HCM Control Delay (s)		11.6	_		_	_
HCM Lane LOS		В	-	D	-	_
HCM 95th %tile Q(veh	1)	0.6	_	3.6	-	-
	,					

Intersection						
Int Delay, s/veh	1.4					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7	ሻ	↑	<u> </u>	7
Traffic Vol, veh/h	0	101	81	885	689	33
Future Vol, veh/h	0	101	81	885	689	33
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	_	0	100	-	_	150
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	93	93	93	93	93	93
	5		5			
Heavy Vehicles, %		5		5	5	5
Mvmt Flow	0	109	87	952	741	35
Major/Minor N	Minor2	1	Major1	١	/lajor2	
Conflicting Flow All	-	741	776	0	-	0
Stage 1	-	_	_	_	-	_
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	6.25	4.15	_	_	_
Critical Hdwy Stg 1	_	-	-	_	_	_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	3.345		_	_	_
Pot Cap-1 Maneuver	0	411	827	_	_	_
Stage 1	0	-	021	_	_	_
Stage 2	0	_	_	_	_	_
Platoon blocked, %	U	-	-	_		_
		111	827		-	
Mov Cap-1 Maneuver	-	411		-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	16.9		0.8		0	
HCM LOS	C		0.0			
TIOWI LOO						
Minor Lane/Major Mvm	t	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		827	-	411	_	_
HCM Lane V/C Ratio		0.105	-	0.264	_	_
HCM Control Delay (s)		9.9	-	16.9	-	-
HCM Lane LOS		A	_	С	_	-
HCM 95th %tile Q(veh)	0.4	-	1	-	-

Intersection						
Int Delay, s/veh	4.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	LDL	T T	NDL	<u> </u>	<u>361</u>	7 July
Traffic Vol, veh/h	0	187	120	893	909	60
Future Vol, veh/h	0	187	120	893	909	60
Conflicting Peds, #/hr	0	0	0	093	0	0
Sign Control		Stop	Free	Free	Free	Free
RT Channelized	Stop -	None		None	riee -	None
Storage Length	-	None 0	100		-	150
Veh in Median Storage		-	100	0	0	150
Grade, %	0	- 04	- 04	0	0	- 04
Peak Hour Factor	91	91	91	91	91	91
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	0	205	132	981	999	66
Major/Minor	Minor2	ı	Major1	N	/lajor2	
Conflicting Flow All	_	999	1065	0	_	0
Stage 1	_	-	-	-	_	_
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	6.23	4.13	_	_	_
Critical Hdwy Stg 1	_	0.20	T. 10	_	_	_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	3.327	2 227		_	_
Pot Cap-1 Maneuver	0	294	650		_	
	0	234	000	-	_	-
Stage 1	0	-	-	-		-
Stage 2	U	-	-	-	-	-
Platoon blocked, %		004	050	-	-	-
Mov Cap-1 Maneuver	-	294	650	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			1.4		0	
HCM LOS	E		1.4		U	
I IOW LOS						
Minor Lane/Major Mvm	nt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		650	-	294	-	-
HCM Lane V/C Ratio		0.203	-	0.699	-	_
HCM Control Delay (s)		11.9	_		_	-
HCM Lane LOS		В	-	Е	-	_
HCM 95th %tile Q(veh)	0.8	_	4.8	-	-
	,					

Intersection						
Int Delay, s/veh	1.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations		7	ች	^		7
Traffic Vol, veh/h	0	109	89	1057	834	30
Future Vol, veh/h	0	109	89	1057	834	30
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- -	None	-	None	-	None
Storage Length	_	0	100	-	_	150
Veh in Median Storag	e,# 0	-	-	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	5	5	5	5	5	5
	0	117	96		897	32
Mvmt Flow	U	117	96	1137	097	32
Major/Minor	Minor2	ı	Major1	N	/lajor2	
Conflicting Flow All	-	897	929	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	_	-	-	_	-
Critical Hdwy	-	6.25	4.15	_	-	_
Critical Hdwy Stg 1	_	_	_	_	_	_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	3.345	2 245	_	_	_
Pot Cap-1 Maneuver	0	334	724	_	_	_
Stage 1	0	-	127	_	_	_
Stage 2	0				_	_
Platoon blocked, %	U	-	-	_	_	-
		334	724	_		
Mov Cap-1 Maneuver					-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s			0.8		0	
HCM LOS	C		0.0		U	
TIOWI LOO	U					
Minor Lane/Major Mvi	mt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		724	_	334	-	_
HCM Lane V/C Ratio		0.132	-	0.351	-	-
HCM Control Delay (s	s)	10.7	_	21.5	-	-
HCM Lane LOS		В	_	С	_	_
HCM 95th %tile Q(ve	h)	0.5	-	1.5	-	-
	,					

7.4 EBL 0 0 Stop - e, # 0 92 3 0 Minor2	EBR 196 196 0 Stop None 0 92 3 213	NBL 124 124 0 Free - 100 - 92 3 135 Major1 1238 - 4.13	NBT 1051 1051 0 Free None - 0 92 3 1142	SBT 1088 1088 0 Free - 0 0 92 3 1183 Major2	SBR 51 51 0 Free None 150 92 3 55
0 0 Stop - e, # 0 0 92 3 0	196 196 0 Stop None 0 - - 92 3 213	124 124 0 Free - 100 - - 92 3 135 Major1 1238 -	1051 1051 0 Free None - 0 0 92 3 1142	1088 1088 0 Free - 0 0 92 3 1183 Major2 - -	51 51 0 Free None 150 - - 92 3 55
0 0 Stop - e, # 0 0 92 3 0	196 196 0 Stop None 0 - - 92 3 213	124 124 0 Free - 100 - - 92 3 135 Major1 1238 -	1051 1051 0 Free None - 0 0 92 3 1142	1088 1088 0 Free - 0 0 92 3 1183 Major2 - -	51 51 0 Free None 150 - - 92 3 55
0 Stop - e, # 0 0 92 3 0	196 196 0 Stop None 0 - - 92 3 213	124 124 0 Free - 100 - - 92 3 135 Major1 1238 -	1051 1051 0 Free None - 0 0 92 3 1142	1088 1088 0 Free - 0 0 92 3 1183	51 51 0 Free None 150 - - 92 3 55
0 Stop - e, # 0 0 92 3 0	196 0 Stop None 0 - - 92 3 213	124 0 Free - 100 - - 92 3 135 Major1 1238 -	1051 0 Free None - 0 0 92 3 1142	1088 0 Free - 0 0 92 3 1183	51 0 Free None 150 - - 92 3 55
e, # 0 92 3 0	0 Stop None 0 - 92 3 213	0 Free - 100 - - 92 3 135 Major1 1238 -	0 Free None - 0 0 92 3 1142	0 Free - 0 0 92 3 1183 Major2 - -	0 Free None 150 - - 92 3 55
Stop e, # 0 0 92 3 0	Stop None 0 - 92 3 213	Free - 100 - 92 3 135 Major1 1238	Free None - 0 0 92 3 1142	Free 0 0 92 3 1183 Major2	Free None 150 92 3 55
e, # 0 0 92 3 0	None 0 92 3 213	- 100 - - 92 3 135 Major1 1238 -	None 0 0 92 3 1142	- 0 0 92 3 1183 Major2 - -	None 150 - 92 3 55
e, # 0 0 92 3 0	0 - - 92 3 213	100 - - 92 3 135 Major1 1238 -	0 0 92 3 1142	0 0 92 3 1183 Major2 -	150 - - 92 3 55
e, # 0 0 92 3 0	92 3 213 1183	92 3 135 Major1 1238	0 0 92 3 1142	0 0 92 3 1183 Major2 - -	92 3 55
0 92 3 0 Minor2	92 3 213 1183	92 3 135 <u>Major1</u> 1238	0 92 3 1142	0 92 3 1183 Major2 - -	92 3 55
92 3 0 Minor2	92 3 213 1183	92 3 135 Major1 1238	92 3 1142 N	92 3 1183 Major2 - - -	92 3 55 0 -
3 0 Minor2	3 213 1183 -	3 135 Major1 1238 -	3 1142 	3 1183 Major2 - - -	3 55 0 -
0 Minor2	213 1183 -	135 <u>Major1</u> 1238 -	1142 	1183 Major2 - - -	0 -
Minor2	1183 - -	<u>Major1</u> 1238 - -	<u>N</u>	Major2 - - - -	0 -
	1183 - -	1238 - -	0	- - -	- -
	1183 - -	1238 - -	0	- - -	- -
-	1183 - -	1238 - -		- - -	- -
- - -			- - -	-	-
- - -			- - -	-	-
-	6.23	4.13	- -		-
-	-	-	-		
_				-	-
	-	-	-	_	-
_	3.327	2.227	_	_	_
0	230	559	_	_	_
	-	-	_	_	_
	_	_	_	_	_
U			_		_
_	230	550	_		_
	200	555	_		_
-	_	-	<u>-</u>	-	_
_	-	-	_	_	-
	_	-	-	-	_
EB		NB		SB	
86.5		1.4		0	
F					
	NDI	NDT	CDL 4	CDT	CDD
III					SBR
				-	-
,				-	-
)				-	-
		-		-	-
າ)	0.9	-	7.9	-	-
,	EB 86.5	0 230 EB - 86.5 - F mt NBL - 559 - 0.241 - 3.5 - B	0 230 559	0	0

Intersection						
Int Delay, s/veh	0.5					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	LDL	T T	NDL	<u> </u>	<u>361</u>	7
Traffic Vol, veh/h	0	120	97	1064	834	37
		120	97	1064	834	37
Future Vol, veh/h	0					
Conflicting Peds, #/hr		0	0	_ 0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Free	-	None	-	None
Storage Length	-	0	100	-	-	150
Veh in Median Storag		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	93	93	93	93	93	93
Heavy Vehicles, %	5	5	5	5	5	5
Mvmt Flow	0	129	104	1144	897	40
NA - ' //NA'	N4' O		M-1- A		4-10	
	Minor2		Major1		/lajor2	
Conflicting Flow All	-	-	937	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	4.15	-	-	-
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	2.245	-	-	-
Pot Cap-1 Maneuver	0	0	719	-	-	-
Stage 1	0	0	-	-	-	-
Stage 2	0	0	-	-	_	-
Platoon blocked, %				_	-	_
Mov Cap-1 Maneuver	· _	_	719	_	_	_
Mov Cap-2 Maneuver		_		_	_	_
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Staye 2	_	_	_	_	-	_
Approach	EB		NB		SB	
HCM Control Delay, s	0		0.9		0	
HCM LOS	A				*	
J = 0 0						
Minor Lane/Major Mvr	mt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		719	-	-	-	-
HCM Lane V/C Ratio		0.145	-	-	-	-
HCM Control Delay (s	s)	10.9	-	0	-	-
HCM Lane LOS		В	-	Α	-	-
HCM 95th %tile Q(vel	h)	0.5	_	-	_	-

Intersection						
Int Delay, s/veh	0.9					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
	LDL	EDK	NDL T			
Lane Configurations	0			1000	1000	*
Traffic Vol, veh/h	0	222	142	1066	1088	66
Future Vol, veh/h	0	222	142	1066	1088	66
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	Free	-	None	-	None
Storage Length	-	0	100	-	-	150
Veh in Median Storage	, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	3	3	3	3	3	3
Mvmt Flow	0	241	154	1159	1183	72
IVIVIII(I IOVV	U	271	107	1100	1100	12
Major/Minor N	//inor2	N	Major1	N	Major2	
Conflicting Flow All	-	-	1255	0	-	0
Stage 1	-	-	-	-	-	-
Stage 2	-	_	_	_	_	_
Critical Hdwy	_	_	4.13	_	_	_
Critical Hdwy Stg 1	_	_	-	_	-	_
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	_	2.227	<u>-</u>	_	<u>-</u>
Pot Cap-1 Maneuver	0	0	551	_	_	
•				-		
Stage 1	0	0	-	-	-	-
Stage 2	0	0	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	-	-	551	-	-	-
Mov Cap-2 Maneuver	-	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Ŭ						
					0.0	
Approach	EB		NB		SB	
HCM Control Delay, s	0		1.7		0	
HCM LOS	Α					
Minor Lane/Major Mvm	+	NBL	NDT	EBLn1	SBT	SBR
	l		INDI	LDLIII		SDK
Capacity (veh/h)		551	-	-	-	-
HCM Lane V/C Ratio		0.28	-	-	-	-
HCM Control Delay (s)		14.1	-	0	-	-
HCM Lane LOS		В	-	Α	-	-
HCM 95th %tile Q(veh)		1.1	-	-	-	-

Intersection												
Int Delay, s/veh	4.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	f)		¥	f)			4			4	
Traffic Vol, veh/h	7	181	13	48	106	7	11	13	97	28	9	9
Future Vol, veh/h	7	181	13	48	106	7	11	13	97	28	9	9
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	60	-	-	60	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	5	5	5	5	5	5	5	5	5	5	5	5
Mvmt Flow	8	199	14	53	116	8	12	14	107	31	10	10
Major/Minor N	Major1		ı	Major2			Minor1		ı	Minor2		
Conflicting Flow All	124	0	0	213	0	0	458	452	206	509	455	120
Stage 1	-	_	_		_	_	222	222		226	226	-
Stage 2	_	-	_	_	-	-	236	230	_	283	229	_
Critical Hdwy	4.15	_	_	4.15	_	_	7.15	6.55	6.25	7.15	6.55	6.25
Critical Hdwy Stg 1	_	_	-	-	_	_	6.15	5.55	_	6.15	5.55	-
Critical Hdwy Stg 2	-	_	-	-	_	-	6.15	5.55	-	6.15	5.55	-
Follow-up Hdwy	2.245	-	-	2.245	-	-	3.545	4.045	3.345	3.545	4.045	3.345
Pot Cap-1 Maneuver	1444	_	-	1340	_	-	508	499	827	470	497	923
Stage 1	-	-	-	-	-	-	774	714	-	770	711	-
Stage 2	-	_	-	-	_	_	760	708	-	718	709	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1444	-	-	1340	-	-	479	476	827	387	474	923
Mov Cap-2 Maneuver	-	-	-	-	-	-	553	532	-	460	520	-
Stage 1	-	-	-	-	-	-	769	710	-	765	683	-
Stage 2	-	-	-	-	-	-	712	680	-	609	705	-
, v												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			2.3			10.8			12.6		
HCM LOS							В			В		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		749	1444	-		1340	-	_	523			
HCM Lane V/C Ratio		0.178		_		0.039	_		0.097			
HCM Control Delay (s)		10.8	7.5	-	-	7.8	-	-				
HCM Lane LOS		В	A	-	-	A	-	_	В			
HCM 95th %tile Q(veh)	0.6	0	_	_	0.1	-	-	0.3			
	,											

Intersection												
Int Delay, s/veh	5.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	f)		¥	£			4			4	
Traffic Vol, veh/h	6	151	19	99	188	26	12	23	79	68	36	10
Future Vol, veh/h	6	151	19	99	188	26	12	23	79	68	36	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	60	-	-	60	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	6	153	19	100	190	26	12	23	80	69	36	10
Major/Minor N	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	216	0	0	172	0	0	601	591	163	629	587	203
Stage 1		_	-	_	-	-	175	175	-	403	403	-
Stage 2	_	_	-	-	-	-	426	416	_	226	184	_
Critical Hdwy	4.12	-	-	4.12	_	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1354	-	-	1405	-	-	412	420	882	395	422	838
Stage 1	-	-	-	-	-	-	827	754	-	624	600	-
Stage 2	-	-	-	-	-	-	606	592	-	777	747	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1354	-	-	1405	-	-	360	389	882	325	390	838
Mov Cap-2 Maneuver	-	-	-	-	-	-	434	454	-	422	448	-
Stage 1	-	-	-	-	-	-	824	751	-	622	557	-
Stage 2	-	-	-	-	-	-	520	550	-	682	744	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			2.5			11.4			15.7		
HCM LOS							В			С		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1			
Capacity (veh/h)		679	1354	-		1405	-	_				
HCM Lane V/C Ratio			0.004	-		0.071	-	_	0.256			
HCM Control Delay (s)		11.4	7.7	-	-	7.8	-	-				
HCM Lane LOS		В	Α	-	-	Α	-	-	С			
HCM 95th %tile Q(veh)	0.6	0	-	-	0.2	-	-	1			

Intersection												
Int Delay, s/veh	5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	f)		ሻ	f)			4			4	
Traffic Vol, veh/h	9	200	13	49	117	14	11	18	100	56	13	10
Future Vol, veh/h	9	200	13	49	117	14	11	18	100	56	13	10
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	_	None	-	_	None	-	-	None	-	-	None
Storage Length	60	-	-	60	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	5	5	5	5	5	5	5	5	5	5	5	5
Mvmt Flow	10	220	14	54	129	15	12	20	110	62	14	11
Major/Minor I	Major1		ľ	Major2			Minor1		ı	Minor2		
Conflicting Flow All	144	0	0	234	0	0	504	499	227	557	499	137
Stage 1		_	-		-	-	247	247		245	245	-
Stage 2	_	_	_	_	_	_	257	252	_	312	254	_
Critical Hdwy	4.15	_	-	4.15	_	-	7.15	6.55	6.25	7.15	6.55	6.25
Critical Hdwy Stg 1	-	-	_	-	-	-	6.15	5.55	-	6.15	5.55	-
Critical Hdwy Stg 2	_	_	-	-	_	_	6.15	5.55	-	6.15	5.55	_
Follow-up Hdwy	2.245	_	_	2.245	_	-	3.545		3.345	3.545	4.045	3.345
Pot Cap-1 Maneuver	1420	_	-	1316	_	-	473	469	805	436	469	904
Stage 1	-	-	-	-	-	-	750	696	-	752	698	-
Stage 2	-	_	-	-	_	-	741	693	-	692	692	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1420	-	-	1316	-	-	440	446	805	352	446	904
Mov Cap-2 Maneuver	-	-	-	-	-	-	523	510	-	430	500	-
Stage 1	-	-	-	-	_	-	745	691	-	747	669	-
Stage 2	-	-	-	-	-	-	687	665	-	576	687	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			2.1			11.3			14.3		
HCM LOS							В			В		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		714	1420	_	_	1316	_	_	472			
HCM Lane V/C Ratio			0.007	-		0.041	-	_	0.184			
HCM Control Delay (s)		11.3	7.6	-	-	7.9	-	-				
HCM Lane LOS		В	Α	-	-	Α	_	_	В			
HCM 95th %tile Q(veh)	0.7	0	-	_	0.1	_	-	0.7			
	,											

Intersection												
Int Delay, s/veh	6.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	f)		¥	f)			4			4	
Traffic Vol, veh/h	9	181	20	102	215	50	12	31	81	106	45	11
Future Vol, veh/h	9	181	20	102	215	50	12	31	81	106	45	11
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	60	-	-	60	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	9	183	20	103	217	51	12	31	82	107	45	11
Major/Minor N	Major1			Major2			Minor1		N	Minor2		
Conflicting Flow All	268	0	0	203	0	0	688	685	193	717	670	243
Stage 1		_	_	-	-	-	211	211	-	449	449	
Stage 2	_	-	_	_	-	-	477	474	_	268	221	_
Critical Hdwy	4.12	_	_	4.12	_	_	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	_	_	-	-	_	-	6.12	5.52	_	6.12	5.52	-
Critical Hdwy Stg 2	-	_	-	-	_	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1296	_	-	1369	_	-	360	371	849	345	378	796
Stage 1	-	-	-	-	-	-	791	728	_	589	572	-
Stage 2	-	_	-	-	_	-	569	558	-	738	720	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1296	-	-	1369	-	-	305	341	849	276	347	796
Mov Cap-2 Maneuver	-	-	-	-	-	-	388	417	-	379	415	-
Stage 1	-	-	-	-	-	-	785	723	-	585	529	-
Stage 2	-	-	-	-	-	-	474	516	-	634	715	-
, v												
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			2.2			12.3			19.9		
HCM LOS							В			С		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		618	1296	-		1369	-	-				
HCM Lane V/C Ratio				_		0.075	_		0.406			
HCM Control Delay (s)		12.3	7.8	_	_	7.8	_	_				
HCM Lane LOS		12.0 B	Α	_	_	Α.	_	_	C			
HCM 95th %tile Q(veh)	0.8	0	-	-	0.2	-	-	1.9			
	,	3.0										

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR SBR
Traffic Vol, veh/h
Traffic Vol, veh/h
Future Vol, veh/h 10 200 13 49 117 20 11 19 100 65 14 11 Conflicting Peds, #/hr 0
Conflicting Peds, #/hr 0
Sign Control Free Free Free Free Roman Processing Free Roman Roman Processing Free Roman Roman Processing Free Roman R
RT Channelized - None - - None -
Storage Length 60 - - 60 - 0 -
Weh in Median Storage, # 0 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 0 1 0 0 - 0
Grade, % - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - 9 91 <
Peak Hour Factor 91
Heavy Vehicles, % 5 5 5 5 5 5 5 5 5
Mymt Flow 11 220 14 54 129 22 12 21 110 71 15 12 Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All 151 0 0 234 0 0 511 508 227 563 504 140 Stage 1 - - - - - 249 249 - 248 248 - Stage 2 - - - - - 262 259 - 315 256 - Critical Hdwy 4.15 - - 4.15 - - 7.15 6.55 6.25 7.15 6.55 6.25 7.15 6.55 6.25 7.15 6.55 6.25 7.15 6.55 6.25 7.15 6.55 6.25 7.15 6.55 6.25 7.15 6.55 6.25 7.15 6.55 5.55 - 6.15
Major/Minor Major1 Major2 Minor1 Minor2 Conflicting Flow All 151 0 0 234 0 0 511 508 227 563 504 140 Stage 1 - - - - 249 249 - 248 248 - Stage 2 - - - - 262 259 - 315 256 - Critical Hdwy 4.15 - - 4.15 - - 7.15 6.55 6.25 7.15 6.55 6.25 Critical Hdwy Stg 1 - - - - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 -
Conflicting Flow All 151 0 0 234 0 0 511 508 227 563 504 140 Stage 1 - - - - - - 249 249 - 248 248 - Stage 2 - - - - - - 262 259 - 315 256 - Critical Hdwy 4.15 - - 4.15 - - 7.15 6.55 6.25 7.15 6.55 6.25 Critical Hdwy Stg 1 - - - - - 6.15 5.55 - 6.15 5.55 - Critical Hdwy Stg 2 - - - - 6.15 5.55 - 6.15 5.55 - Critical Hdwy Stg 2 - - - - 6.15 5.55 - 6.15 5.55 - Critical Hdwy Stg 2 - -
Conflicting Flow All 151 0 0 234 0 0 511 508 227 563 504 140 Stage 1 - - - - - - 249 249 - 248 248 - Stage 2 - - - - - 262 259 - 315 256 - Critical Hdwy 4.15 - - 4.15 - - 7.15 6.55 6.25 7.15 6.55 6.25 Critical Hdwy Stg 1 - - - - 6.15 5.55 - 6.15 5.55 - Critical Hdwy Stg 2 - - - - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15
Conflicting Flow All 151 0 0 234 0 0 511 508 227 563 504 140 Stage 1 - - - - - - 249 249 - 248 248 - Stage 2 - - - - - - 262 259 - 315 256 - Critical Hdwy 4.15 - - 4.15 - - 7.15 6.55 6.25 7.15 6.55 6.25 Critical Hdwy Stg 1 - - - - - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15 5.55 - 6.15
Stage 1 - - - - 249 248 248 - Stage 2 - - - - 262 259 - 315 256 - Critical Hdwy 4.15 - - 4.15 - 7.15 6.55 6.25 7.15 6.55 6.25 Critical Hdwy Stg 1 - - - - 6.15 5.55 - 6.15 5.55 - Critical Hdwy Stg 2 - - - - 6.15 5.55 - 6.15 5.55 - Follow-up Hdwy 2.245 - - 2.245 - - 3.545 4.045 3.345 3.545 4.045 3.345 Pot Cap-1 Maneuver 1412 - 1316 - 468 463 805 432 466 900 Stage 1 - - - - 748 695 - 749 696 -<
Stage 2 - - - - 262 259 - 315 256 - Critical Hdwy 4.15 - 4.15 - 7.15 6.55 6.25 7.15 6.55 6.25 Critical Hdwy Stg 1 - - - - 6.15 5.55 - 6.15 5.55 - Critical Hdwy Stg 2 - - - - 6.15 5.55 - 6.15 5.55 - Follow-up Hdwy 2.245 - - 2.245 - - 3.545 4.045 3.345 3.545 4.045 3.345 Pot Cap-1 Maneuver 1412 - 1316 - - 468 463 805 432 466 900 Stage 1 - - - - 748 695 - 749 696 - Stage 2 - - - - - - - -
Critical Hdwy 4.15 - - 4.15 - - 7.15 6.55 6.25 7.15 6.55 6.25 Critical Hdwy Stg 1 - - - - 6.15 5.55 - 6.15 5.55 - Critical Hdwy Stg 2 - - - - 6.15 5.55 - 6.15 5.55 - Follow-up Hdwy 2.245 - - 2.245 - - 3.545 4.045 3.345 3.545 4.045 3.345 Pot Cap-1 Maneuver 1412 - 1316 - 468 463 805 432 466 900 Stage 1 - - - - 748 695 - 749 696 - Stage 2 - - - - - 736 688 - 690 690 - Platoon blocked, % - - - - 434 440 805 348 443 900 Mov Cap-2 Maneuver - - -
Critical Hdwy Stg 1 - - - - 6.15 5.55 - 6.15 5.55 - Critical Hdwy Stg 2 - - - - 6.15 5.55 - 6.15 5.55 - Follow-up Hdwy 2.245 - - 2.245 - - 3.545 4.045 3.345 3.545 4.045 3.345 Pot Cap-1 Maneuver 1412 - 1316 - 468 463 805 432 466 900 Stage 1 - - - - - 749 696 - Stage 2 - - - - - 736 688 - 690 690 - Platoon blocked, % - - - - - 434 440 805 348 443 900 Mov Cap-1 Maneuver 1412 - - 1316 - - 434 440 805 348 443 900
Critical Hdwy Stg 2 - - - - 6.15 5.55 - 6.15 5.55 - Follow-up Hdwy 2.245 - - 2.245 - - 3.545 4.045 3.345 3.545 4.045 3.345 Pot Cap-1 Maneuver 1412 - 1316 - 468 463 805 432 466 900 Stage 1 - - - - 748 695 - 749 696 - Stage 2 - - - - - 736 688 - 690 690 - Platoon blocked, % - - - - - 434 440 805 348 443 900 Mov Cap-2 Maneuver - - - - 518 505 - 427 497 -
Follow-up Hdwy 2.245 - 2.245 - 3.545 4.045 3.345 3.545 4.045 3.345 Pot Cap-1 Maneuver 1412 - 1316 - 468 463 805 432 466 900 Stage 1 748 695 - 749 696 - Stage 2 736 688 - 690 690 - Platoon blocked, %
Pot Cap-1 Maneuver 1412 - - 1316 - - 468 463 805 432 466 900 Stage 1 - - - - 748 695 - 749 696 - Stage 2 - - - - - 736 688 - 690 690 - Platoon blocked, % -
Stage 1 - - - - 748 695 - 749 696 - Stage 2 - - - - - 736 688 - 690 690 - Platoon blocked, % -
Stage 2 - - - - 736 688 - 690 690 - Platoon blocked, % - - - - - - Mov Cap-1 Maneuver 1412 - - 1316 - - 434 440 805 348 443 900 Mov Cap-2 Maneuver - - - - 518 505 - 427 497 -
Platoon blocked, % -
Mov Cap-1 Maneuver 1412 - - 1316 - - 434 440 805 348 443 900 Mov Cap-2 Maneuver - - - - 518 505 - 427 497 -
Mov Cap-2 Maneuver 518 505 - 427 497 -
Stage 1 742 689 - 743 667 -
Stage 2 680 660 - 573 684 -
Approach EB WB NB SB
HCM Control Delay, s 0.3 2.1 11.3 14.8
HCM LOS B B
Minor Lane/Major Mvmt NBLn1 EBL EBT EBR WBL WBT WBR SBLn1
Capacity (veh/h) 710 1412 1316 467
HCM Lane V/C Ratio 0.201 0.008 0.041 0.212
HCM Control Delay (s) 11.3 7.6 - 7.9 - 14.8
HCM Lane LOS B A A B
HCM 95th %tile Q(veh) 0.7 0 0.1 0.8

Intersection												
Int Delay, s/veh	7.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- ሻ	ĵ.		ነ	₽			4			4	
Traffic Vol, veh/h	12	181	20	102	215	63	12	34	81	126	48	14
Future Vol, veh/h	12	181	20	102	215	63	12	34	81	126	48	14
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	60	-	-	60	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	_	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	12	183	20	103	217	64	12	34	82	127	48	14
Major/Minor N	/lajor1			Major2			Minor1			Minor2		
Conflicting Flow All	281	0	0	203	0	0	703	704	193	730	682	249
Stage 1	-	-	-		-	-	217	217	-	455	455	
Stage 2	<u>-</u>	_	_	_	_	_	486	487	<u> </u>	275	227	_
Critical Hdwy	4.12	_	_	4.12	_	_	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	- 1.12	<u>-</u>	_	- 1.12	_	_	6.12	5.52	- U.LL	6.12	5.52	0.22
Critical Hdwy Stg 2	_	_	_	_	_	_	6.12	5.52	_	6.12	5.52	_
	2.218	_		2.218	_	_	3.518	4.018		3.518	4.018	
Pot Cap-1 Maneuver	1282	_	_	1369	_	_	352	361	849	338	372	790
Stage 1	1202	_	_	1000	_	_	785	723	043	585	569	130
Stage 2	_	_	_	_	_	_	563	550	_	731	716	_
Platoon blocked, %		_			_	_	303	550		701	110	_
Mov Cap-1 Maneuver	1282	_		1369	_	_	295	331	849	268	341	790
Mov Cap-1 Maneuver	1202	_	_	1000	_	_	377	408	- 043	372	411	130
Stage 1	_					_	778	716	_	580	526	
Stage 2	_	_		-	_	_	464	509	_	623	710	_
Olaye Z	_	_	_	_	_	_	707	503	_	023	7 10	_
				10.00								
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			2.1			12.6			22.1		
HCM LOS							В			С		
Minor Lane/Major Mvm	t 1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		603	1282	-	-	1369	-	-	397			
HCM Lane V/C Ratio		0.213		-	-	0.075	_	_	0.478			
HCM Control Delay (s)		12.6	7.8	_	_	7.8	_	_	22.1			
HCM Lane LOS		В	A	_	-	A	-	-	C			
HCM 95th %tile Q(veh)		0.8	0	-	-	0.2	_	-	2.5			

Intersection												
Int Delay, s/veh	5.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	- 1	₽.			₽			4			4	
Traffic Vol, veh/h	11	242	16	60	141	16	14	21	122	62	15	12
Future Vol, veh/h	11	242	16	60	141	16	14	21	122	62	15	12
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	60	-	-	60	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	5	5	5	5	5	5	5	5	5	5	5	5
Mvmt Flow	12	263	17	65	153	17	15	23	133	67	16	13
Major/Minor N	/lajor1			Major2		ı	Minor1			Minor2		
Conflicting Flow All	170	0	0	280	0	0	602	596	272	666	596	162
Stage 1	-	-	-		-	-	296	296	-	292	292	-
Stage 2	_	_	_	_	_	_	306	300	<u> </u>	374	304	_
Critical Hdwy	4.15	_	_	4.15	_	_	7.15	6.55	6.25	7.15	6.55	6.25
Critical Hdwy Stg 1	-	<u>-</u>	_	- 1.10	_	_	6.15	5.55	0.20	6.15	5.55	0.20
Critical Hdwy Stg 2	_	_	_	_	_	_	6.15	5.55	_	6.15	5.55	_
	2.245	_	_	2.245	_	_	3.545			3.545	4.045	3.345
Pot Cap-1 Maneuver	1389	_	_	1266	_	_	407	413	760	369	413	875
Stage 1	-	_	_	-1200	_	_	706	663	-	710	666	-
Stage 2	_	_	_	_	_	_	697	660	_	641	658	_
Platoon blocked, %		<u>-</u>	_		_	_	301	500		U T1	500	
Mov Cap-1 Maneuver	1389	_	_	1266	_	_	372	388	760	280	388	875
Mov Cap-2 Maneuver	-	_	_		_	_	469	466	-	362	454	-
Stage 1	_	_	_	_	_	_	700	657	_	704	632	_
Stage 2	<u>-</u>	<u>-</u>	_	<u>-</u>	_	_	635	626	<u>-</u>	506	652	<u>-</u>
3.0g0 L							500	320		300	302	
Annragah	ED			MD			ND			O.D.		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			2.2			12.2			16.5		
HCM LOS							В			С		
Minor Lane/Major Mvm	t 1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1			
Capacity (veh/h)		667	1389	-	-	1266	-	-	408			
HCM Lane V/C Ratio		0.256		-	-	0.052	-	-	0.237			
HCM Control Delay (s)		12.2	7.6	-	-	8	_	-	16.5			
HCM Lane LOS		В	Α	-	-	Α	-	-	С			
HCM 95th %tile Q(veh)		1	0	-	-	0.2	-	-	0.9			
				-								

Intersection												
Int Delay, s/veh	8.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ነ	f)		7	ĵ.			4			4	
Traffic Vol, veh/h	11	215	24	124	257	56	15	36	99	121	53	14
Future Vol, veh/h	11	215	24	124	257	56	15	36	99	121	53	14
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	60	-	-	60	-	-	-	-	-	-	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	11	217	24	125	260	57	15	36	100	122	54	14
Major/Minor N	Major1			Major2		1	Minor1			Minor2		
Conflicting Flow All	317	0	0	241	0	0	824	818	229	858	802	289
Stage 1	_	-	-	_	_	-	251	251		539	539	
Stage 2	_	-	-	-	_	_	573	567	_	319	263	_
Critical Hdwy	4.12	_	-	4.12	_	-	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.12	5.52	-	6.12	5.52	-
Follow-up Hdwy	2.218	-	-	2.218	-	-	3.518	4.018	3.318	3.518	4.018	3.318
Pot Cap-1 Maneuver	1243	-	-	1326	-	-	292	311	810	277	317	750
Stage 1	-	-	-	-	-	-	753	699	-	527	522	-
Stage 2	_	-	-	-	-	-	505	507	-	693	691	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	1243	-	-	1326	-	-	234	279	810	207	285	750
Mov Cap-2 Maneuver	-	-	-	-	-	-	321	364	-	313	362	-
Stage 1	-	_	-	-	_	-	746	693	-	522	473	-
Stage 2	-	-	-	-	-	-	398	459	-	570	685	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			2.3			13.8			28		
HCM LOS							В			D		
Minor Lane/Major Mvm	nt N	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR :	SBLn1			
Capacity (veh/h)		560	1243	-		1326	-	-				
HCM Lane V/C Ratio		0.271	0.009	_		0.094	_		0.557			
HCM Control Delay (s)		13.8	7.9	_	_	8	_	_	28			
HCM Lane LOS		В	Α	_	_	A	_	_	D			
HCM 95th %tile Q(veh)	1.1	0	-	-	0.3	-	-	3.2			
	,					3.0			7.2			

Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>ች</u>	ĵ∍		7	f)			4			4	
Traffic Vol, veh/h	12	242	16	60	141	22	14	22	122	71	16	13
Future Vol, veh/h	12	242	16	60	141	22	14	22	122	71	16	13
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	60	-	-	60	-	-	-	-	-	-	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	1	-	-	1	_
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, %	5	5	5	5	5	5	5	5	5	5	5	5
Mvmt Flow	13	263	17	65	153	24	15	24	133	77	17	14
Major/Minor N	Major1		1	Major2		1	Minor1		ı	Minor2		
Conflicting Flow All	177	0	0	280	0	0	609	605	272	671	601	165
Stage 1	-	-	-		-	-	298	298	-	295	295	-
Stage 2	_	<u>-</u>	_	_	_	_	311	307	_	376	306	_
Critical Hdwy	4.15	_	_	4.15	_	_	7.15	6.55	6.25	7.15	6.55	6.25
Critical Hdwy Stg 1	- 1.10	<u>-</u>	<u>-</u>		_	_	6.15	5.55	0.20	6.15	5.55	0.20
Critical Hdwy Stg 2	_	_	_	_	_	_	6.15	5.55	_	6.15	5.55	_
Follow-up Hdwy	2.245	_	_	2.245	_	_	3.545	4.045		3.545	4.045	3.345
Pot Cap-1 Maneuver	1381	_	_	1266	_	_	403	408	760	366	410	872
Stage 1	-	_	<u>-</u>		_	_	704	662	-	707	664	-
Stage 2	_	_	_	_	_	_	693	656	_	639	656	_
Platoon blocked, %		<u>-</u>	_		_	_	330	500		505	500	
Mov Cap-1 Maneuver	1381	_	_	1266	_	_	367	384	760	277	385	872
Mov Cap-1 Maneuver	-	<u>-</u>	_		_	_	465	463	-	359	452	-
Stage 1	_	_	_	_	_	_	698	656	_	701	630	_
Stage 2	_	_	_	_	_	_	629	623	_	503	650	_
Clayo L							323	520		300	300	
Annanah	ED			VACD			ND			OB		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.3			2.2			12.3			17.2		
HCM LOS							В			С		
Minor Lane/Major Mvm	nt 1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1			
Capacity (veh/h)		663	1381	-	-	1266	-	-	403			
HCM Lane V/C Ratio		0.259	0.009	-	-	0.052	-	-	0.27			
HCM Control Delay (s)		12.3	7.6	-	-	8	-	-	17.2			
HCM Lane LOS		В	Α	-	-	Α	-	-	С			
HCM 95th %tile Q(veh))	1	0	-	-	0.2	-	-	1.1			

Intersection												
Int Delay, s/veh	9.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>ነ</u>	₽		7	₽			4			4	
Traffic Vol, veh/h	14	215	24	124	257	69	15	39	99	141	56	17
Future Vol, veh/h	14	215	24	124	257	69	15	39	99	141	56	17
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	60	-	-	60	-	-	-	-	-	-	-	-
Veh in Median Storage	, # -	0	-	-	0	-	-	1	-	-	1	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	99	99	99	99	99	99	99	99	99	99	99	99
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	14	217	24	125	260	70	15	39	100	142	57	17
Major/Minor N	Major1		1	Major2		ı	Minor1		ı	Minor2		
Conflicting Flow All	330	0	0	241	0	0	839	837	229	872	814	295
Stage 1	-	-	-	<u>-</u> TI	-	-	257	257	-	545	545	255
Stage 2	<u>-</u>	_	_	_	_	_	582	580	_	327	269	_
Critical Hdwy	4.12	_	_	4.12	_	_	7.12	6.52	6.22	7.12	6.52	6.22
Critical Hdwy Stg 1	- 1.12	_	_	- 1.12	_	_	6.12	5.52	- U.L.L	6.12	5.52	- 0.22
Critical Hdwy Stg 2	_	_	_	_	_	_	6.12	5.52	_	6.12	5.52	_
	2.218	_	_	2.218	_	_	3.518	4.018		3.518	4.018	3.318
Pot Cap-1 Maneuver	1229	_	_	1326	_	_	285	303	810	271	312	744
Stage 1	-	_	<u>-</u>		_	_	748	695	-	523	519	
Stage 2	_	_	_	_	_	_	499	500	_	686	687	_
Platoon blocked, %		_	_		_	_	100	500		500	301	
Mov Cap-1 Maneuver	1229	_	_	1326	_	_	225	271	810	200	280	744
Mov Cap-2 Maneuver	-	_	_	- 1020	_	_	311	357	-	306	358	-
Stage 1	_	_	_	_	_	_	740	687	_	517	470	_
Stage 2	<u>-</u>	_	_	<u>-</u>	_	_	388	453	_	560	679	_
5.0g0 L							300	,00		300	3,0	
Annuagah	ED			MD			ND			O.D.		
Approach	EB			WB			NB			SB		
HCM Control Delay, s	0.4			2.2			14.2			33.6		
HCM LOS							В			D		
Minor Lane/Major Mvm	t 1	NBLn1	EBL	EBT	EBR	WBL	WBT	WBR S				
Capacity (veh/h)		547	1229	-	-	1326	-	-	334			
HCM Lane V/C Ratio		0.283	0.012	-	-	0.094	-	-	0.647			
HCM Control Delay (s)		14.2	8	-	-	8	-	-	33.6			
HCM Lane LOS		В	Α	-	-	Α	-	-	D			
HCM 95th %tile Q(veh)		1.2	0	-	-	0.3	-	-	4.3			
HUM 95th %tile Q(veh)		1.2	0	-	-	0.3	-	-	4.3			

APPENDIX E

Queue Analysis Worksheets

▼ Site: 3 [2022 Existing AM (Site Folder: General)]

Main Street & SH-133 Site Category: (None)

Roundabout

Veh	icle Mo	vement	t Perfori	mance										
Mov	Turn	INP		DEM		Deg.		Level of	95% BA			Effective	Aver.	Aver.
ID		VOLL [Total	MES HV]	FLO' [Total	ws HV1	Satn	Delay	Service	QUE [Veh.	Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	%	veh/h	%	v/c	sec		veh	ft		rate		mph
Sout	h: SH-1	33												
3	L2	66	5.0	73	5.0	0.438	10.0	LOS A	1.9	49.4	0.46	0.48	0.56	29.9
8	T1	556	5.0	611	5.0	0.438	9.9	LOS A	1.9	49.4	0.44	0.46	0.54	29.9
18	R2	37	5.0	41	5.0	0.438	9.8	LOS A	1.8	47.4	0.43	0.45	0.53	29.3
Appr	oach	659	5.0	724	5.0	0.438	9.9	LOSA	1.9	49.4	0.44	0.47	0.55	29.9
East	: Main S	Street												
1	L2	63	5.0	69	5.0	0.399	12.5	LOS B	1.4	37.5	0.59	0.67	0.87	30.9
6	T1	45	5.0	49	5.0	0.399	12.5	LOS B	1.4	37.5	0.59	0.67	0.87	30.9
16	R2	98	5.0	108	5.0	0.399	12.5	LOS B	1.4	37.5	0.59	0.67	0.87	30.0
Appr	oach	206	5.0	226	5.0	0.399	12.5	LOS B	1.4	37.5	0.59	0.67	0.87	30.5
Nortl	n: SH-10	33												
7	L2	80	5.0	88	5.0	0.426	8.9	LOS A	1.6	41.5	0.35	0.26	0.35	30.3
4	T1	585	5.0	643	5.0	0.426	8.8	LOSA	1.6	41.5	0.34	0.26	0.34	30.3
14	R2	57	5.0	63	5.0	0.426	8.8	LOS A	1.5	39.1	0.33	0.25	0.33	29.6
Appr	oach	722	5.0	793	5.0	0.426	8.8	LOSA	1.6	41.5	0.34	0.26	0.34	30.3
Wes	t: Main S	Street												
5	L2	170	5.0	187	5.0	0.597	17.5	LOS C	3.3	84.6	0.65	0.92	1.28	21.6
2	T1	65	5.0	71	5.0	0.597	17.5	LOS C	3.3	84.6	0.65	0.92	1.28	21.2
12	R2	90	5.0	99	5.0	0.597	17.5	LOS C	3.3	84.6	0.65	0.92	1.28	20.7
Appr	oach	325	5.0	357	5.0	0.597	17.5	LOS C	3.3	84.6	0.65	0.92	1.28	21.3
All V	ehicles	1912	5.0	2101	5.0	0.597	11.1	LOS B	3.3	84.6	0.45	0.49	0.63	28.1

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Wednesday, October 26, 2022 1:35:34 PM Project: K:\DEN TPTO\096671006 - ANB Bank Carbondale\Engineering\2022\Analysis\Main Street & SH-133 Sidra 8.sip9

▼ Site: 3 [2022 Existing PM (Site Folder: General)]

Main Street & SH-133 Site Category: (None)

Roundabout

Vehi	cle Mo	vemen	t Perfori	mance										
Mov	Turn	INF		DEM		Deg.		Level of	95% BA		Prop.	Effective	Aver.	Aver.
ID		VOLU [Total	JMES HV 1	FLO' [Total	WS HV]	Satn	Delay	Service	QUE [Veh.	:UE Dist]	Que	Stop Rate	No. Cycles	Speed
		veh/h	⊓v j %	veh/h	пv ј %	v/c	sec		veh	ft		Rale	Cycles	mph
Sout	h: SH-1	33												
3	L2	90	3.0	98	3.0	0.445	11.1	LOS B	2.1	53.1	0.54	0.63	0.78	29.3
8	T1	480	3.0	522	3.0	0.445	10.9	LOS B	2.1	53.1	0.52	0.61	0.77	29.5
18	R2	34	3.0	37	3.0	0.445	10.8	LOS B	2.0	51.5	0.51	0.60	0.76	28.9
Appr	oach	604	3.0	657	3.0	0.445	10.9	LOS B	2.1	53.1	0.52	0.62	0.77	29.4
East	Main S	Street												
1	L2	57	3.0	62	3.0	0.600	16.8	LOSC	3.5	89.3	0.65	0.92	1.26	22.0
6	T1	112	3.0	122	3.0	0.600	16.8	LOS C	3.5	89.3	0.65	0.92	1.26	21.6
16	R2	182	3.0	198	3.0	0.600	16.8	LOS C	3.5	89.3	0.65	0.92	1.26	21.1
Appr	oach	351	3.0	382	3.0	0.600	16.8	LOS C	3.5	89.3	0.65	0.92	1.26	21.4
North	n: SH-1	33												
7	L2	292	3.0	317	3.0	0.578	12.4	LOS B	4.5	115.0	0.50	0.59	0.79	28.2
4	T1	547	3.0	595	3.0	0.578	12.3	LOS B	4.5	115.0	0.49	0.58	0.78	28.8
14	R2	106	3.0	115	3.0	0.578	12.3	LOS B	4.4	112.1	0.48	0.57	0.77	28.4
Appr	oach	945	3.0	1027	3.0	0.578	12.3	LOS B	4.5	115.0	0.49	0.58	0.78	28.6
West	:: Main \$	Street												
5	L2	126	3.0	137	3.0	0.586	18.5	LOSC	2.9	74.5	0.70	0.95	1.32	21.5
2	T1	70	3.0	76	3.0	0.586	18.5	LOS C	2.9	74.5	0.70	0.95	1.32	21.1
12	R2	97	3.0	105	3.0	0.586	18.5	LOS C	2.9	74.5	0.70	0.95	1.32	20.6
Appr	oach	293	3.0	318	3.0	0.586	18.5	LOS C	2.9	74.5	0.70	0.95	1.32	21.1
All V	ehicles	2193	3.0	2384	3.0	0.600	13.5	LOS B	4.5	115.0	0.55	0.69	0.93	26.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Wednesday, October 26, 2022 1:35:34 PM Project: K:\DEN TPTO\096671006 - ANB Bank Carbondale\Engineering\2022\Analysis\Main Street & SH-133 Sidra 8.sip9

▼ Site: 3 [2025 Background AM (Site Folder: General)]

Main Street & SH-133 Site Category: (None)

Roundabout

Veh	icle Mo	vement	Perfor	mance										
Mov ID	Turn	INP VOLU [Total veh/h		DEM/ FLO' [Total veh/h		Deg. Satn v/c		Level of Service	95% BA QUE [Veh. veh	ACK OF EUE Dist] ft	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed mph
Sou	th: SH-1	33												
3	L2	71	5.0	78	5.0	0.495	11.7	LOS B	2.7	70.2	0.52	0.64	0.81	29.2
8	T1	593	5.0	652	5.0	0.495	11.5	LOS B	2.7	70.2	0.51	0.63	0.80	29.3
18	R2	38	5.0	42	5.0	0.495	11.5	LOS B	2.6	68.3	0.50	0.61	0.78	28.7
App	roach	702	5.0	771	5.0	0.495	11.6	LOS B	2.7	70.2	0.51	0.63	0.80	29.3
East	t: Main S	Street												
1	L2	70	5.0	77	5.0	0.536	16.9	LOS C	2.4	62.4	0.67	0.82	1.20	29.2
6	T1	56	5.0	62	5.0	0.536	16.9	LOS C	2.4	62.4	0.67	0.82	1.20	29.2
16	R2	136	5.0	149	5.0	0.536	16.9	LOS C	2.4	62.4	0.67	0.82	1.20	28.4
App	roach	262	5.0	288	5.0	0.536	16.9	LOSC	2.4	62.4	0.67	0.82	1.20	28.8
Nort	h: SH-1	33												
7	L2	108	5.0	119	5.0	0.470	9.8	LOS A	1.8	47.7	0.39	0.31	0.39	29.8
4	T1	612	5.0	673	5.0	0.470	9.7	LOS A	1.8	47.7	0.38	0.30	0.38	29.9
14	R2	60	5.0	66	5.0	0.470	9.7	LOS A	1.7	45.1	0.37	0.30	0.37	29.3
App	roach	780	5.0	857	5.0	0.470	9.7	LOSA	1.8	47.7	0.38	0.30	0.38	29.9
Wes	st: Main S	Street												
5	L2	197	5.0	216	5.0	0.733	25.4	LOS D	5.2	134.7	0.75	1.19	1.80	20.1
2	T1	82	5.0	90	5.0	0.733	25.4	LOS D	5.2	134.7	0.75	1.19	1.80	19.8
12	R2	100	5.0	110	5.0	0.733	25.4	LOS D	5.2	134.7	0.75	1.19	1.80	19.4
App	roach	379	5.0	416	5.0	0.733	25.4	LOS D	5.2	134.7	0.75	1.19	1.80	19.8
All V	/ehicles	2123	5.0	2333	5.0	0.733	14.0	LOS B	5.2	134.7	0.52	0.63	0.87	27.1

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Wednesday, October 26, 2022 1:37:10 PM Project: K:\DEN_TPTO\096671006 - ANB Bank Carbondale\Engineering\2022\Analysis\Main Street & SH-133_Sidra 8.sip9

🦁 Site: 3 [2025 Background PM (Site Folder: General)]

Main Street & SH-133 Site Category: (None)

Roundabout

Veh	icle Mo	vement	Perfori	mance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service	95% B <i>A</i> QUE	CK OF	Prop. Que	Effective Stop	Aver.	Aver. Speed
		[Total veh/h	HV]	[Total veh/h	HV] %	V/C	sec	Service	[Veh. veh	Dist] ft	Que	Rate	Cycles	mph
Sout	h: SH-1		/0	VC11/11	/0	VIC	366		Ven	''				ШДП
3	L2	102	3.0	111	3.0	0.546	14.8	LOS B	3.0	76.8	0.63	0.80	1.11	27.9
8	T1	523	3.0	568	3.0	0.546	14.6	LOS B	3.0	76.8	0.61	0.78	1.10	28.1
18	R2	35	3.0	38	3.0	0.546	14.4	LOS B	2.9	75.4	0.61	0.77	1.09	27.6
Appr	oach	660	3.0	717	3.0	0.546	14.6	LOS B	3.0	76.8	0.62	0.78	1.10	28.1
East	: Main S	Street												
1	L2	67	3.0	73	3.0	0.819	32.1	LOS D	7.7	197.8	0.81	1.43	2.29	19.2
6	T1	142	3.0	154	3.0	0.819	32.1	LOS D	7.7	197.8	0.81	1.43	2.29	18.9
16	R2	234	3.0	254	3.0	0.819	32.1	LOS D	7.7	197.8	0.81	1.43	2.29	18.5
Appr	oach	443	3.0	482	3.0	0.819	32.1	LOS D	7.7	197.8	0.81	1.43	2.29	18.7
Nortl	h: SH-1	33												
7	L2	372	3.0	404	3.0	0.683	16.3	LOS C	7.6	194.9	0.62	0.89	1.25	26.8
4	T1	587	3.0	638	3.0	0.683	16.2	LOS C	7.6	194.9	0.60	0.87	1.24	27.5
14	R2	112	3.0	122	3.0	0.683	16.1	LOS C	7.5	192.1	0.60	0.86	1.23	27.1
Appr	oach	1071	3.0	1164	3.0	0.683	16.2	LOS C	7.6	194.9	0.61	0.87	1.24	27.2
Wes	t: Main S	Street												
5	L2	171	3.0	186	3.0	0.815	36.3	LOS E	6.2	159.6	0.86	1.43	2.33	18.4
2	T1	89	3.0	97	3.0	0.815	36.3	LOS E	6.2	159.6	0.86	1.43	2.33	18.1
12	R2	108	3.0	117	3.0	0.815	36.3	LOS E	6.2	159.6	0.86	1.43	2.33	17.8
Appr	oach	368	3.0	400	3.0	0.815	36.3	LOS E	6.2	159.6	0.86	1.43	2.33	18.1
All V	ehicles	2542	3.0	2763	3.0	0.819	21.5	LOSC	7.7	197.8	0.68	1.03	1.55	23.8

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Wednesday, October 26, 2022 1:37:09 PM Project: K:\DEN TPTO\096671006 - ANB Bank Carbondale\Engineering\2022\Analysis\Main Street & SH-133 Sidra 8.sip9

▼ Site: 3 [2025 Total AM (Site Folder: General)]

Main Street & SH-133 Site Category: (None)

Roundabout

Vehi	cle Mo	vement	Perfori	mance										
	Turn	INP		DEM		Deg.		Level of		ACK OF		Effective	Aver.	Aver.
ID		VOLU		FLO'		Satn	Delay	Service	QUE		Que	Stop		Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] ft		Rate	Cycles	mph
South	n: SH-1	33												
3	L2	72	5.0	79	5.0	0.505	12.0	LOS B	2.8	73.3	0.53	0.66	0.85	29.1
8	T1	597	5.0	656	5.0	0.505	11.9	LOS B	2.8	73.3	0.52	0.65	0.84	29.2
18	R2	38	5.0	42	5.0	0.505	11.8	LOS B	2.7	71.4	0.51	0.64	0.83	28.5
Appro	oach	707	5.0	777	5.0	0.505	11.9	LOS B	2.8	73.3	0.52	0.65	0.84	29.1
East:	Main S	treet												
1	L2	70	5.0	77	5.0	0.561	17.8	LOS C	2.6	67.8	0.69	0.85	1.26	28.9
6	T1	61	5.0	67	5.0	0.561	17.8	LOS C	2.6	67.8	0.69	0.85	1.26	28.9
16	R2	141	5.0	155	5.0	0.561	17.8	LOS C	2.6	67.8	0.69	0.85	1.26	28.1
Appro	oach	272	5.0	299	5.0	0.561	17.8	LOS C	2.6	67.8	0.69	0.85	1.26	28.5
North	: SH-13	33												
7	L2	116	5.0	127	5.0	0.479	10.0	LOS A	1.9	49.1	0.40	0.33	0.40	29.7
4	T1	615	5.0	676	5.0	0.479	9.9	LOS A	1.9	49.1	0.39	0.32	0.39	29.8
14	R2	60	5.0	66	5.0	0.479	9.9	LOS A	1.8	46.4	0.38	0.31	0.38	29.2
Appro	oach	791	5.0	869	5.0	0.479	9.9	LOSA	1.9	49.1	0.39	0.32	0.39	29.8
West	: Main S	Street												
5	L2	201	5.0	221	5.0	0.755	27.2	LOS D	5.6	145.7	0.76	1.25	1.91	19.8
2	T1	85	5.0	93	5.0	0.755	27.2	LOS D	5.6	145.7	0.76	1.25	1.91	19.5
12	R2	101	5.0	111	5.0	0.755	27.2	LOS D	5.6	145.7	0.76	1.25	1.91	19.1
Appro	oach	387	5.0	425	5.0	0.755	27.2	LOS D	5.6	145.7	0.76	1.25	1.91	19.5
All Ve	hicles	2157	5.0	2370	5.0	0.755	14.7	LOS B	5.6	145.7	0.54	0.66	0.92	26.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Wednesday, October 26, 2022 3:22:18 PM Project: K:\DEN TPTO\096671006 - ANB Bank Carbondale\Engineering\2022\Analysis\Main Street & SH-133 Sidra 8.sip9

▼ Site: 3 [2025 Total PM (Site Folder: General)]

Main Street & SH-133 Site Category: (None)

Roundabout

Vehi	cle Mo	vement	Perfori	mance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service	95% B <i>A</i> QUE	CK OF		Effective Stop	Aver.	Aver.
טו		[Total	HV]	[Total	HV]			Service	[Veh.	Dist]	Que	Rate	Cycles	Speed
Courth	n: SH-1	veh/h	%	veh/h	%	v/c	sec		veh	ft				mph
3	L2	105	3.0	114	3.0	0.572	16.0	LOS C	3.2	82.8	0.65	0.83	1.19	27.5
8	T1	531	3.0	577	3.0	0.572	15.7	LOS C	3.2	82.8	0.64	0.82	1.18	27.7
18	R2	35	3.0	38	3.0	0.572	15.5	LOS C	3.2	81.5	0.63	0.81	1.17	27.3
Appro	oach	671	3.0	729	3.0	0.572	15.8	LOS C	3.2	82.8	0.64	0.82	1.18	27.7
East:	Main S	treet												
1	L2	67	3.0	73	3.0	0.870	38.7	LOS E	9.7	247.1	0.85	1.64	2.75	18.2
6	T1	152	3.0	165	3.0	0.870	38.7	LOS E	9.7	247.1	0.85	1.64	2.75	17.9
16	R2	244	3.0	265	3.0	0.870	38.7	LOS E	9.7	247.1	0.85	1.64	2.75	17.5
Appro	oach	463	3.0	503	3.0	0.870	38.7	LOS E	9.7	247.1	0.85	1.64	2.75	17.7
North	: SH-13	33												
7	L2	390	3.0	424	3.0	0.707	17.5	LOS C	8.4	215.7	0.65	0.96	1.37	26.4
4	T1	595	3.0	647	3.0	0.707	17.3	LOS C	8.4	215.7	0.63	0.94	1.36	27.1
14	R2	112	3.0	122	3.0	0.707	17.3	LOS C	8.3	212.9	0.63	0.94	1.35	26.7
Appro	oach	1097	3.0	1192	3.0	0.707	17.4	LOS C	8.4	215.7	0.64	0.95	1.36	26.8
West	: Main s	Street												
5	L2	181	3.0	197	3.0	0.879	45.5	LOS E	8.2	209.4	0.90	1.67	2.89	17.1
2	T1	97	3.0	105	3.0	0.879	45.5	LOS E	8.2	209.4	0.90	1.67	2.89	16.9
12	R2	111	3.0	121	3.0	0.879	45.5	LOS E	8.2	209.4	0.90	1.67	2.89	16.6
Appro	oach	389	3.0	423	3.0	0.879	45.5	LOS E	8.2	209.4	0.90	1.67	2.89	16.9
All Ve	hicles	2620	3.0	2848	3.0	0.879	24.9	LOSC	9.7	247.1	0.71	1.15	1.79	23.0

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Wednesday, October 26, 2022 3:22:19 PM Project: K:\DEN TPTO\096671006 - ANB Bank Carbondale\Engineering\2022\Analysis\Main Street & SH-133 Sidra 8.sip9

▼ Site: 3 [2045 Background AM (Site Folder: General)]

Main Street & SH-133 Site Category: (None)

Roundabout

Vehi	cle Mo	vement	Perfori	mance										
Mov ID	Turn	INP VOLU [Total	JMES HV]	DEM/ FLO' [Total	WS HV]	Deg. Satn	Delay	Level of Service	QUI [Veh.	ACK OF EUE Dist]	Prop. Que	Effective Stop Rate	Aver. No. Cycles	Aver. Speed
Courth	v. CLI 1	veh/h	%	veh/h	%	v/c	sec		veh	ft				mph
	n: SH-1													
3	L2	86	5.0	95	5.0	0.639	16.6	LOSC	5.0	128.8	0.64	0.89	1.29	27.5
8	T1	719	5.0	790	5.0	0.639	16.4	LOS C	5.0	128.8	0.63	0.87	1.27	27.6
18	R2	47	5.0	52	5.0	0.639	16.2	LOS C	4.9	126.9	0.61	0.86	1.26	27.0
Appro	oach	852	5.0	936	5.0	0.639	16.4	LOS C	5.0	128.8	0.63	0.87	1.27	27.5
East:	Main S	Street												
1	L2	84	5.0	92	5.0	0.731	29.7	LOS D	4.3	111.3	0.81	1.10	1.88	25.1
6	T1	67	5.0	74	5.0	0.731	29.7	LOS D	4.3	111.3	0.81	1.10	1.88	25.0
16	R2	158	5.0	174	5.0	0.731	29.7	LOS D	4.3	111.3	0.81	1.10	1.88	24.5
Appro	oach	309	5.0	340	5.0	0.731	29.7	LOS D	4.3	111.3	0.81	1.10	1.88	24.8
North	: SH-13	33												
7	L2	127	5.0	140	5.0	0.588	12.7	LOS B	4.6	120.8	0.49	0.58	0.78	28.7
4	T1	744	5.0	818	5.0	0.588	12.7	LOS B	4.6	120.8	0.48	0.56	0.77	28.8
14	R2	73	5.0	80	5.0	0.588	12.6	LOS B	4.5	117.7	0.47	0.55	0.76	28.2
Appro	oach	944	5.0	1037	5.0	0.588	12.7	LOS B	4.6	120.8	0.48	0.57	0.77	28.8
West	: Main S	Street												
5	L2	236	5.0	259	5.0	1.000	69.4	LOS F	16.8	435.8	1.00	2.53	4.84	14.5
2	T1	97	5.0	107	5.0	1.000	69.4	LOS F	16.8	435.8	1.00	2.53	4.84	14.4
12	R2	120	5.0	132	5.0	1.000	69.4	LOS F	16.8	435.8	1.00	2.53	4.84	14.1
Appro	oach	453	5.0	498	5.0	1.000	69.4	LOS F	16.8	435.8	1.00	2.53	4.84	14.4
All Ve	hicles	2558	5.0	2811	5.0	1.000	26.0	LOS D	16.8	435.8	0.66	1.08	1.79	23.7

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Wednesday, October 26, 2022 1:38:56 PM Project: K:\DEN_TPTO\096671006 - ANB Bank Carbondale\Engineering\2022\Analysis\Main Street & SH-133_Sidra 8.sip9

🦁 Site: 3 [2045 Background PM (Site Folder: General)]

Main Street & SH-133 Site Category: (None)

Roundabout

Vehi	icle Mo	vement	Perfori	mance										
Mov ID	Turn	INP VOLU		DEM/ FLO		Deg. Satn		Level of Service	95% B <i>A</i> QUE	ACK OF	Prop. Que	Effective Stop	Aver.	Aver. Speed
שו		[Total veh/h	HV]	[Total veh/h	HV] %	V/C	sec	Service	[Veh. veh	Dist]	Que	Rate	Cycles	mph
Sout	h: SH-1		/0	VC11/11	/0	V/C	366		VEII	11				ШДП
3	L2	122	3.0	133	3.0	0.705	22.5	LOS C	5.2	132.6	0.73	1.03	1.64	25.6
8	T1	631	3.0	686	3.0	0.705	22.1	LOS C	5.2	132.6	0.72	1.02	1.63	25.7
18	R2	43	3.0	47	3.0	0.705	21.8	LOS C	5.2	131.9	0.71	1.01	1.62	25.4
Appr	oach	796	3.0	865	3.0	0.705	22.2	LOSC	5.2	132.6	0.72	1.02	1.63	25.7
East	: Main S	treet												
1	L2	80	3.0	87	3.0	1.079	89.7	LOS F	26.8	686.5	1.00	3.25	6.59	12.9
6	T1	168	3.0	183	3.0	1.079	89.7	LOS F	26.8	686.5	1.00	3.25	6.59	12.8
16	R2	275	3.0	299	3.0	1.079	89.7	LOS F	26.8	686.5	1.00	3.25	6.59	12.6
Appr	oach	523	3.0	568	3.0	1.079	89.7	LOS F	26.8	686.5	1.00	3.25	6.59	12.7
North	n: SH-10	33												
7	L2	438	3.0	476	3.0	0.849	28.0	LOS D	16.4	419.4	0.83	1.45	2.29	23.6
4	T1	711	3.0	773	3.0	0.849	27.7	LOS D	16.4	419.4	0.82	1.44	2.27	24.1
14	R2	136	3.0	148	3.0	0.849	27.6	LOS D	16.4	418.6	0.81	1.43	2.27	23.8
Appr	oach	1285	3.0	1397	3.0	0.849	27.8	LOS D	16.4	419.4	0.82	1.44	2.28	23.9
Wes	t: Main S	Street												
5	L2	199	3.0	216	3.0	1.122	112.4	LOS F	26.0	664.8	1.00	3.39	7.43	11.4
2	T1	105	3.0	114	3.0	1.122	112.4	LOS F	26.0	664.8	1.00	3.39	7.43	11.3
12	R2	130	3.0	141	3.0	1.122	112.4	LOS F	26.0	664.8	1.00	3.39	7.43	11.2
Appr	oach	434	3.0	472	3.0	1.122	112.4	LOS F	26.0	664.8	1.00	3.39	7.43	11.3
All V	ehicles	3038	3.0	3302	3.0	1.122	49.1	LOS E	26.8	686.5	0.85	1.92	3.59	18.5

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Wednesday, October 26, 2022 1:39:28 PM Project: K:\DEN TPTO\096671006 - ANB Bank Carbondale\Engineering\2022\Analysis\Main Street & SH-133 Sidra 8.sip9

🦁 Site: 3 [2045 Total AM +RT Lanes (Site Folder: General)]

Main Street & SH-133 Site Category: (None)

Roundabout

Vehic	cle Mo	vement	Perfori	mance										
-	Turn	INP		DEM		Deg.		Level of		ACK OF		Effective	Aver.	Aver.
ID		VOLU [Total	IMES HV 1	FLO' [Total	WS HV1	Satn	Delay	Service	QUE [Veh.	EUE Dist 1	Que	Stop Rate	No. Cycles	Speed
		veh/h	пv ј %	veh/h	пv ј %	v/c	sec		veh	ft		Raie	Cycles	mph
South	: SH-1	33												
3	L2	87	5.0	96	5.0	0.651	17.2	LOS C	5.1	133.3	0.65	0.91	1.34	27.3
8	T1	723	5.0	795	5.0	0.651	17.0	LOS C	5.1	133.3	0.64	0.90	1.33	27.4
18	R2	47	5.0	52	5.0	0.651	16.8	LOS C	5.1	131.5	0.63	0.89	1.32	26.8
Appro	ach	857	5.0	942	5.0	0.651	17.0	LOS C	5.1	133.3	0.64	0.90	1.33	27.3
East:	Main S	street												
1	L2	84	5.0	92	5.0	0.395	15.6	LOSC	1.4	35.1	0.70	0.79	1.02	29.3
6	T1	72	5.0	79	5.0	0.395	15.6	LOS C	1.4	35.1	0.70	0.79	1.02	29.2
16	R2	163	5.0	179	5.0	0.389	14.6	LOS B	1.3	33.5	0.68	0.76	0.99	29.6
Appro	ach	319	5.0	351	5.0	0.395	15.1	LOS C	1.4	35.1	0.69	0.77	1.00	29.4
North	: SH-13	33												
7	L2	135	5.0	148	5.0	0.597	13.0	LOS B	4.9	128.5	0.50	0.61	0.83	28.6
4	T1	747	5.0	821	5.0	0.597	13.0	LOS B	4.9	128.5	0.49	0.59	0.82	28.7
14	R2	73	5.0	80	5.0	0.597	12.9	LOS B	4.8	125.4	0.48	0.58	0.80	28.1
Appro	ach	955	5.0	1049	5.0	0.597	13.0	LOS B	4.9	128.5	0.49	0.60	0.82	28.6
West	Main S	Street												
5	L2	240	5.0	264	5.0	0.758	30.5	LOS D	5.0	129.2	0.81	1.28	1.99	19.2
2	T1	100	5.0	110	5.0	0.758	30.5	LOS D	5.0	129.2	0.81	1.28	1.99	18.9
12	R2	121	5.0	133	5.0	0.285	12.2	LOS B	8.0	21.9	0.64	0.69	0.76	22.1
Appro	ach	461	5.0	507	5.0	0.758	25.7	LOS D	5.0	129.2	0.77	1.12	1.67	19.8
All Ve	hicles	2592	5.0	2848	5.0	0.758	16.8	LOSC	5.1	133.3	0.61	0.81	1.16	26.2

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Wednesday, October 26, 2022 3:32:15 PM Project: K:\DEN TPTO\096671006 - ANB Bank Carbondale\Engineering\2022\Analysis\Main Street & SH-133 Sidra 8.sip9

🦁 Site: 3 [2045 Total PM + RT Lanes (Site Folder: General)]

Main Street & SH-133 Site Category: (None)

Roundabout

Vehi	icle Mo	vement	Perform	mance										
Mov ID	Turn	INP VOLL		DEM/ FLO		Deg. Satn		Level of Service	95% B <i>A</i> QUE	ACK OF	Prop. Que	Effective Stop	Aver.	Aver. Speed
		[Total veh/h	HV] %	[Total veh/h	HV] %	v/c	sec	0011100	[Veh. veh	Dist] ft	Que	Rate	Cycles	mph
Sout	h: SH-1				,,									
3	L2	125	3.0	136	3.0	0.752	26.7	LOS D	5.9	151.0	0.77	1.13	1.88	24.4
8	T1	639	3.0	695	3.0	0.752	26.2	LOS D	5.9	151.0	0.76	1.12	1.87	24.6
18	R2	43	3.0	47	3.0	0.752	25.8	LOS D	5.9	150.7	0.76	1.11	1.86	24.3
Appr	oach	807	3.0	877	3.0	0.752	26.2	LOS D	5.9	151.0	0.76	1.12	1.87	24.6
East	: Main S	Street												
1	L2	80	3.0	87	3.0	0.579	20.0	LOS C	2.8	70.5	0.74	0.98	1.35	21.4
6	T1	178	3.0	193	3.0	0.579	20.0	LOS C	2.8	70.5	0.74	0.98	1.35	21.0
16	R2	285	3.0	310	3.0	0.605	20.3	LOS C	3.0	76.4	0.74	1.00	1.40	20.4
Appr	oach	543	3.0	590	3.0	0.605	20.2	LOS C	3.0	76.4	0.74	0.99	1.38	20.7
North	n: SH-13	33												
7	L2	456	3.0	496	3.0	0.886	33.0	LOS D	18.8	482.5	0.90	1.64	2.70	22.5
4	T1	719	3.0	782	3.0	0.886	32.6	LOS D	18.9	483.0	0.89	1.63	2.69	22.9
14	R2	136	3.0	148	3.0	0.886	32.5	LOS D	18.9	483.0	0.88	1.62	2.69	22.6
Appr	oach	1311	3.0	1425	3.0	0.886	32.7	LOS D	18.9	483.0	0.89	1.63	2.69	22.8
Wes	t: Main S	Street												
5	L2	209	3.0	227	3.0	0.853	46.8	LOS E	6.3	160.4	0.91	1.55	2.66	16.9
2	T1	113	3.0	123	3.0	0.853	46.8	LOS E	6.3	160.4	0.91	1.55	2.66	16.7
12	R2	133	3.0	145	3.0	0.378	16.9	LOS C	1.2	31.6	0.75	0.86	1.05	21.1
Appr	oach	455	3.0	495	3.0	0.853	38.0	LOS E	6.3	160.4	0.86	1.35	2.19	17.9
All V	ehicles	3116	3.0	3387	3.0	0.886	29.6	LOS D	18.9	483.0	0.83	1.35	2.18	21.9

Site Level of Service (LOS) Method: Delay & v/c (HCM 2010). Site LOS Method is specified in the Parameter Settings dialog (Site tab). Roundabout LOS Method: Same as Sign Control.

Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement.

LOS F will result if v/c > 1 irrespective of movement delay value (does not apply for approaches and intersection).

Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).

Roundabout Capacity Model: US HCM 2010.

Delay Model: HCM Delay Formula (Geometric Delay is not included).

Queue Model: HCM Queue Formula. Gap-Acceptance Capacity: Traditional M1.

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Organisation: KIMLEY-HORN & ASSOCIATES INC | Licence: NETWORK / Enterprise | Processed: Wednesday, October 26, 2022 3:32:15 PM Project: K:\DEN TPTO\096671006 - ANB Bank Carbondale\Engineering\2022\Analysis\Main Street & SH-133 Sidra 8.sip9

APPENDIX F

Conceptual Site Plan

Carbondale - ANB Bank Mixed Use Development

Level 1 Plan

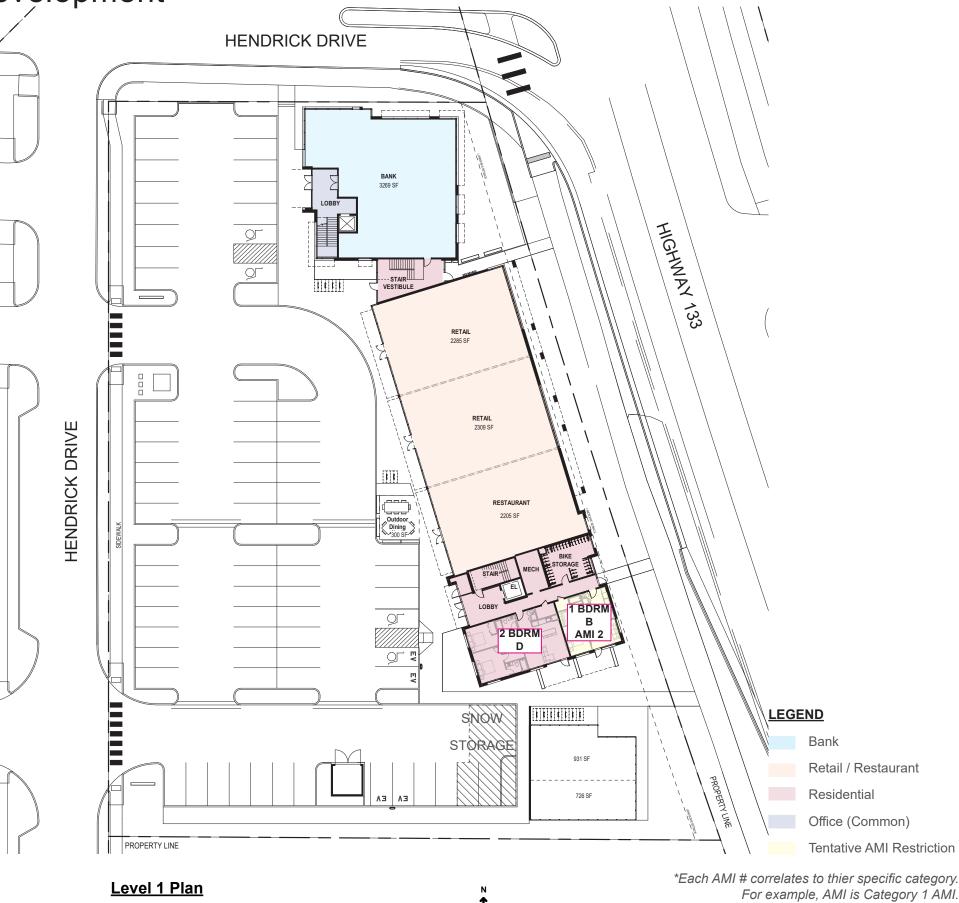
Building Areas

14,085 GFA
12,896 GFA
26,981 GFA*
4,593 GFA
2,505 GFA
3,269 GFA
439 GFA
1040 GFA
2,216 GFA
3,279 GFA
9,640 GFA
26,981 GFA*

^{*}Gross floor area calculations used for the purposes of parking requirements exclude mechanical and elevator shafts and do not include stair shafts above Level 1.

Building Height

Max Allowed


32' / 28'-8" and 31' Bank / Residences

Unit Matrix	(
Unit Type	Quantity	Unit Area* (GFA)	Required Bulk Storage (Cu. Ft)	Provided Bulk Storage (Cu. Ft)	Bulk Storage Dimensions	AMI Deed Restriction
Studio A	2	545	182	189	5.25'x4'x9'	1,3
Studio B	1	395	132	139	4.75'x3.25'x9'	_
1Bdrm A	8	550	184	189	5.25'x4'x9'	_
1Bdrm B	1	590	197	198	4'x5.5'x9'	2
2 Bdrm A	1	956	319	324	4'x9'x9'	_
2 Bdrm B	1	780	260	262	6'x5.25'x9'	_
2 Bdrm C	1	956	319	326	7.25'x5'x9'	_
2 Bdrm D	1	1000	333	335	8'x4.66'x9'	-
Total	16					-

^{*} GFA unit calculation excludes covered private outdoor space and is measured from centerline of demising unit walls and outside face of exterior wall.

Parking

Required:								
Bank -	(4/1000 GFA)	3,269 GFA	13.1 Stalls					
Office -	(1/300 GFA)	3,695 GFA	12.3 Stalls					
Retail -	(1/200 GFA)	4,593 GFA	23.0 Stalls					
Restaurant (Dining) -	(1/150 GFA)	2,505 GFA	16.7 Stalls					
Household Living:								
Studio (Efficiency) Unit	(1.25/ Unit)	3 Units	3.75 Stalls					
One Bdrm Units	(1.5/ Unit)	9 Units	13.5 Stalls					
Two Bbrm (Under 800)	(1.5/ Unit)	1 Units	1.5 Stalls					
Two Bdrm (Over 800)	(1.75/ Unit)	3 Units	5.25 Stalls					
Total Required			89.1 Stalls					
Reductions:	5.8.4.D1	(89.1 x .15)	-13.4 Stalls					
	5.8.4.D2	(24 x .15)	- 3.6 Stalls					
Total Required (w/ red	72.1 Stalls							
Total Provided 74 Stalls								

All unit design layouts are conceptual and are subject to change.

Scale: 1" = 40'-0"

^{*}Gross floor Area includes 300 sf Outdoor Dining Area as shown in the site plan for use of parking requirements

^{**}Provided design layouts of the residential units, and possible retail/restaurant space are conceptual and subject to

Carbondale - ANB Bank Mixed Use Development Level 2 Plan

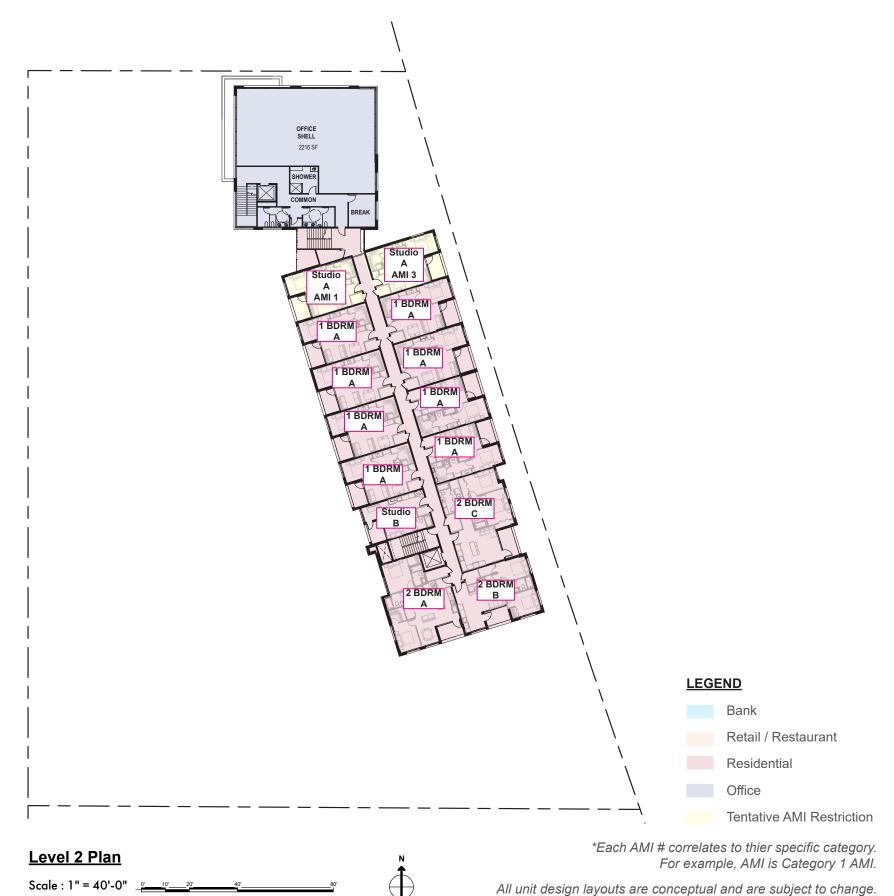
Building Areas

Total	26,981 GFA [*]
Multi-Family (Level 2)	9,640 GFA
Multi-Family (Level 1)	3,279 GFA
Office (Level 2 Shell)	2,216 GFA
Office (Level 2 Common)	1040 GFA
Office (Level 1 Common)	439 GFA
Bank	3,269 GFA
Possible Restaurant (Indoor + Outdoor Dining)	2,505 GFA
Possible Retail	4,593 GFA
Total	26,961 GFA
Total	26,981 GFA
Level 2 Overall	12,896 GFA
Level 1 Overall	14,085 GFA

^{*}Gross floor area calculations used for the purposes of parking requirements exclude mechanical and elevator shafts and do not include stair shafts above Level 1.

Building Height

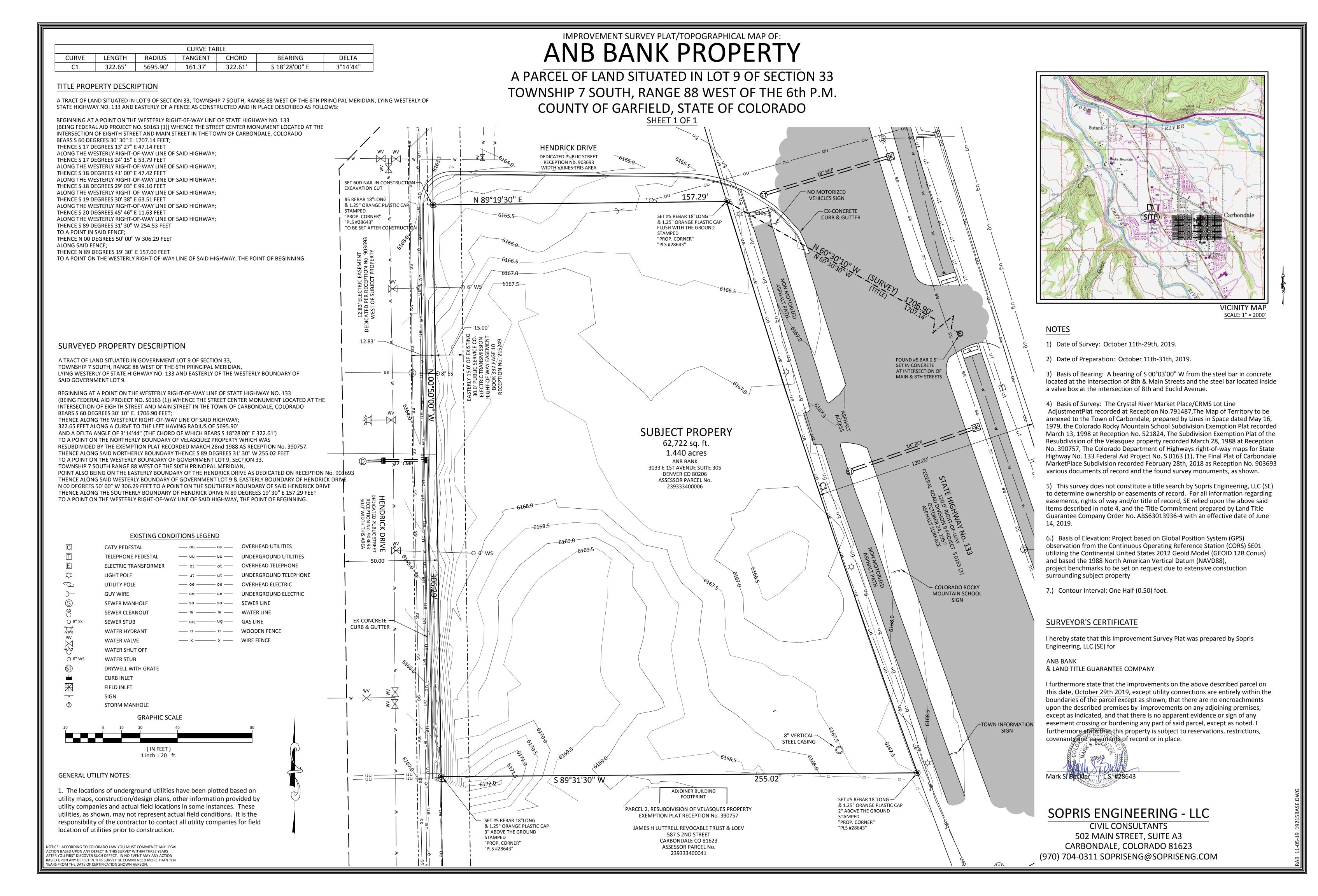
Max Allowed 3

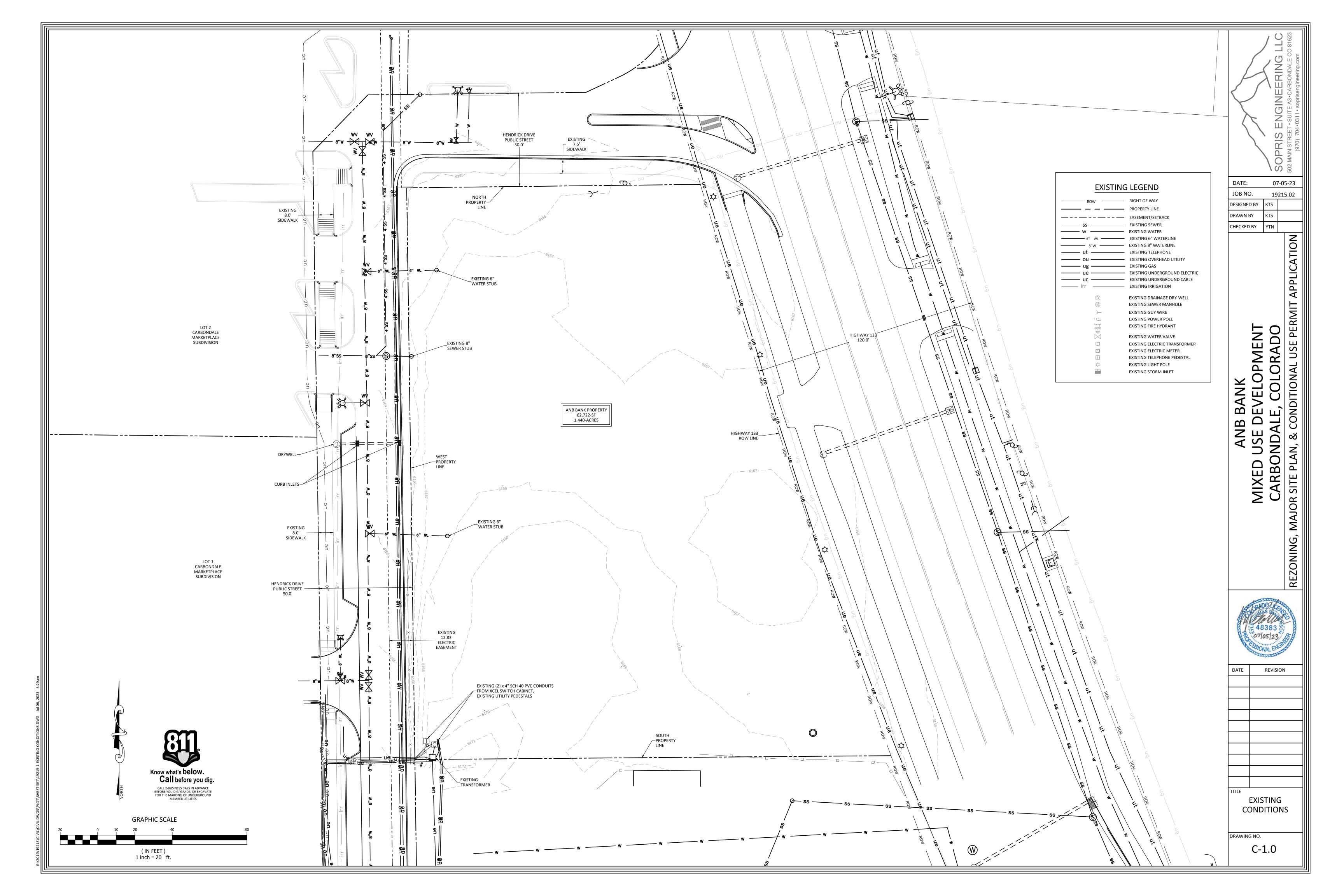

Bank / Residences 32' / 28'-8" and 31'

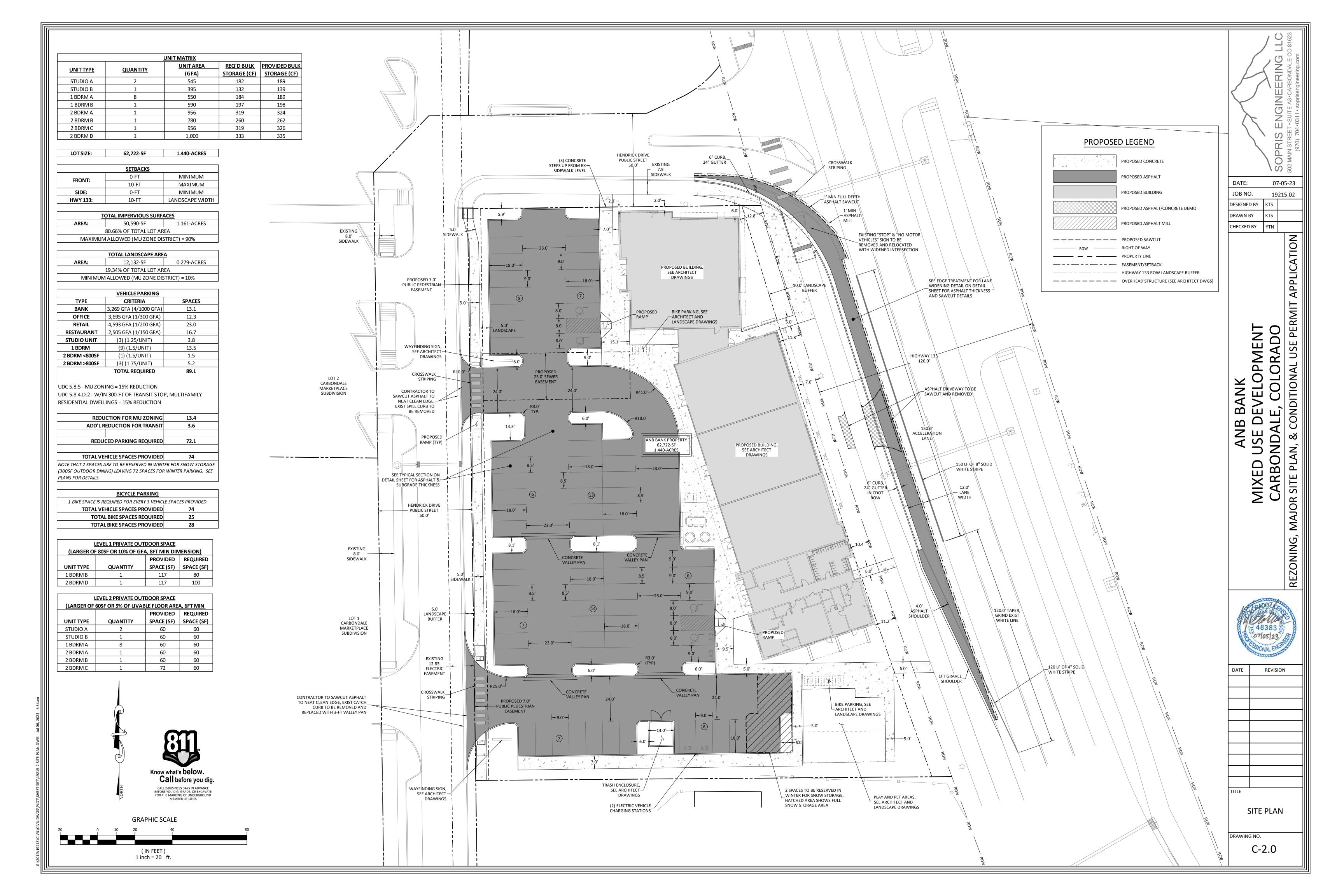
Unit Matrix									
Unit Type	Quantity	Unit Area* (GFA)	Required Bulk Storage (Cu. Ft)	Provided Bulk Storage (Cu. Ft)	Bulk Storage Dimensions	AMI Deed Restriction			
Studio A	2	545	182	189	5.25'x4'x9'	1,3			
Studio B	1	395	132	139	4.75'x3.25'x9'	_			
1Bdrm A	8	550	184	189	5.25'x4'x9'	_			
1Bdrm B	1	590	197	198	4'x5.5'x9'	2			
2 Bdrm A	1	956	319	324	4'x9'x9'	_			
2 Bdrm B	1	780	260	262	6'x5.25'x9'	_			
2 Bdrm C	1	956	319	326	7.25'x5'x9'	_			
2 Bdrm D	1	1000	333	335	8'x4.66'x9'	-			
Total	16					-			

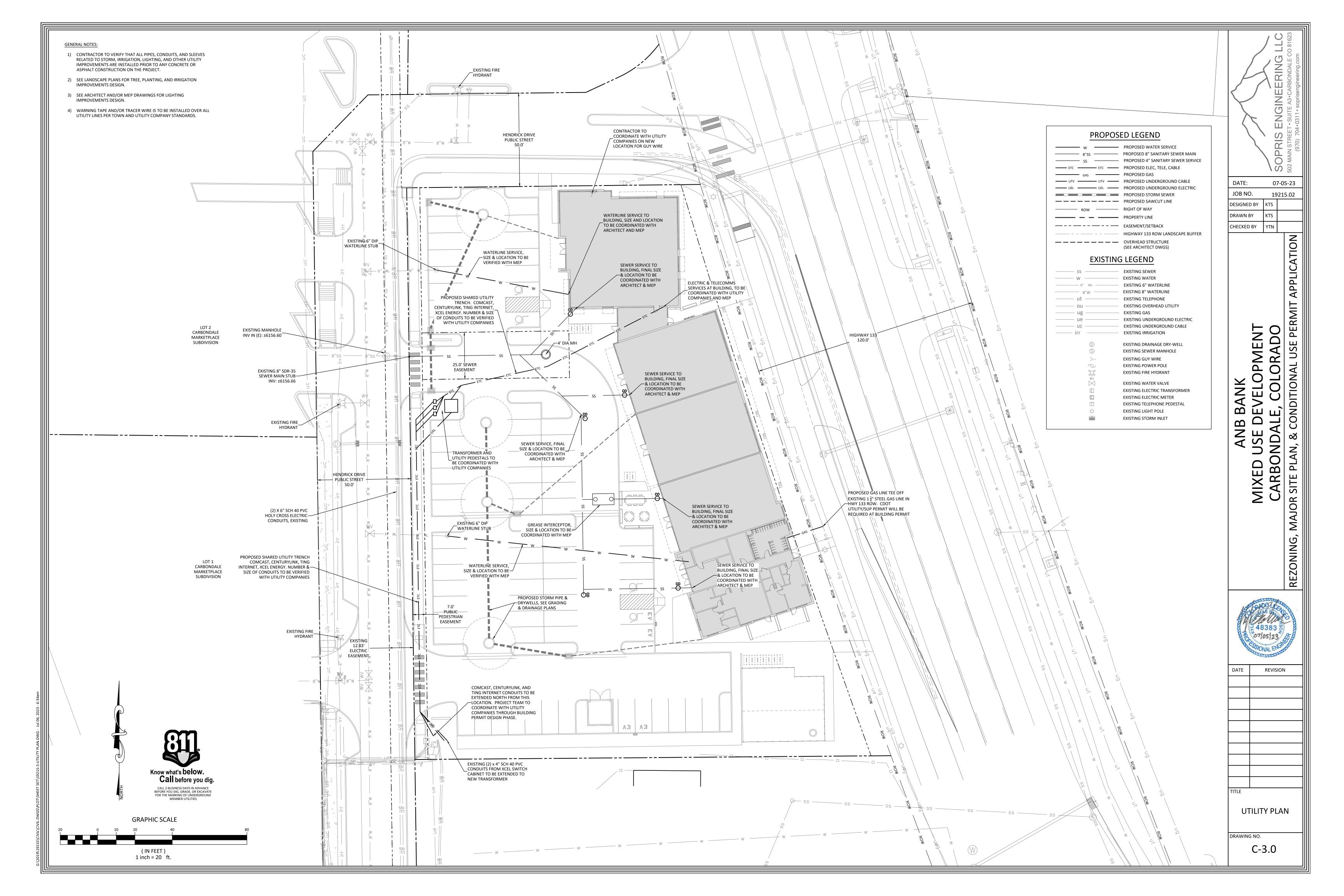
^{*} GFA unit calculation excludes covered private outdoor space and is measured from centerline of demising unit walls and outside face of exterior wall.

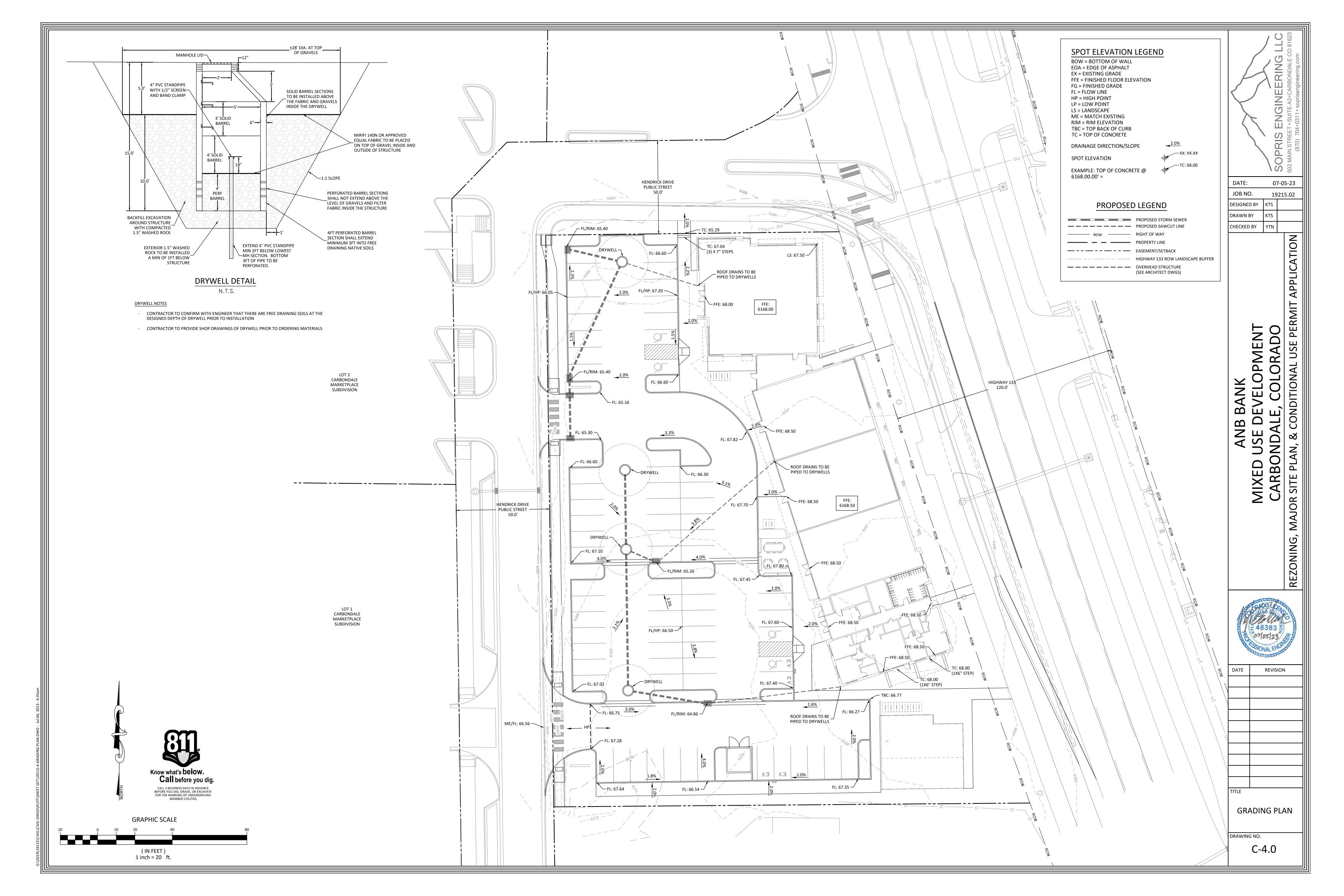
Parking

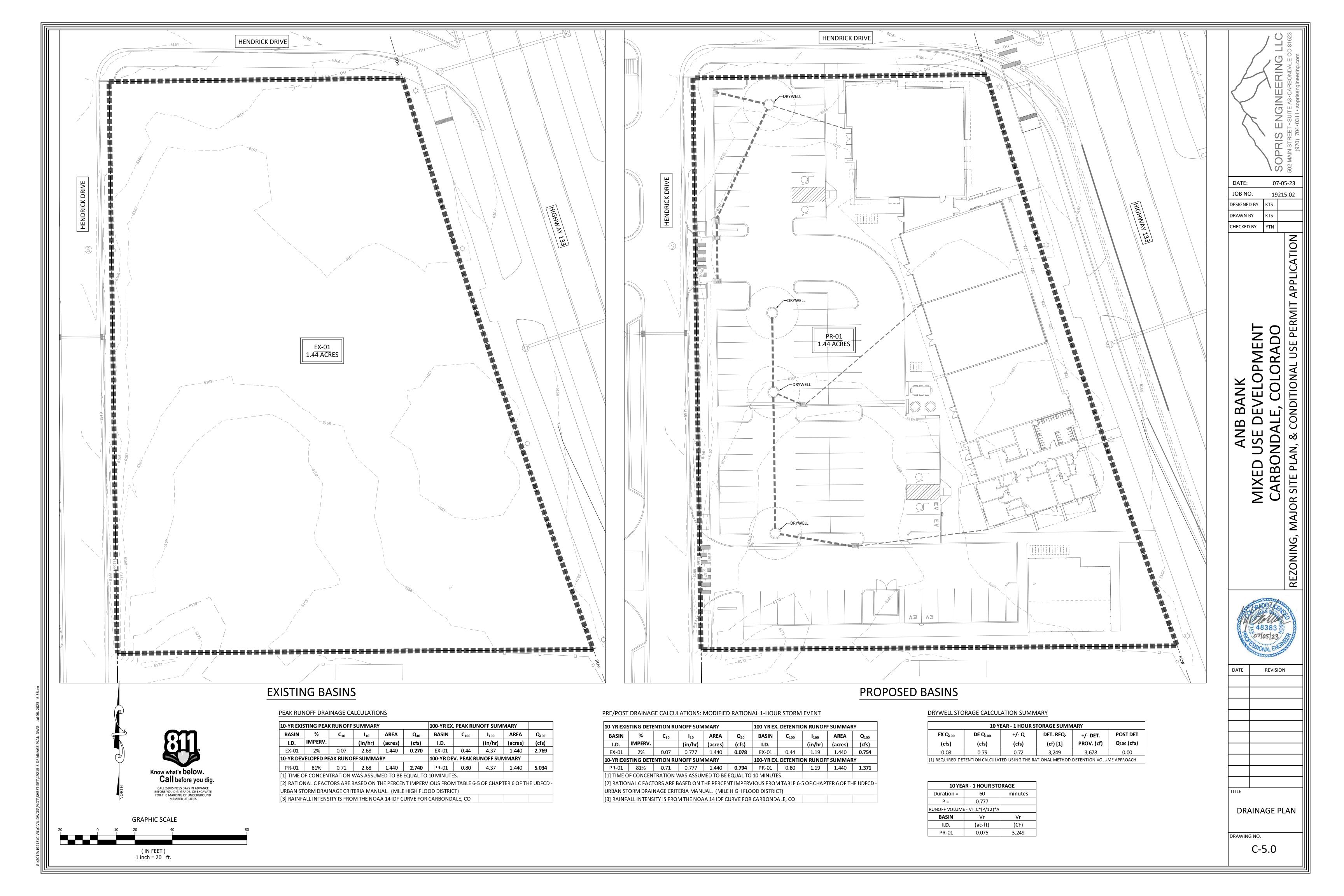

Required:							
Bank -	(4/1000 GFA)	3,269 GFA	13.1 Stalls				
Office -	(1/300 GFA)	3,695 GFA	12.3 Stalls				
Retail -	(1/200 GFA)	4,593 GFA	23.0 Stalls				
Restaurant (Dining) -	(1/150 GFA)	2,505 GFA	16.7 Stalls				
Household Living:							
Studio (Efficiency) Unit	(1.25/ Unit)	3 Units	3.75 Stalls				
One Bdrm Units	(1.5/ Unit)	9 Units	13.5 Stalls				
Two Bbrm (Under 800)	(1.5/ Unit)	1 Units	1.5 Stalls				
Two Bdrm (Over 800)	(1.75/ Unit)	3 Units	5.25 Stalls				
Total Required			89.1 Stalls				
Reductions:	5.8.4.D1	(89.1 x .15)	-13.4 Stalls				
	5.8.4.D2	(24 x .15)	- 3.6 Stalls				
Total Required (w/ reduction) 72.1 Stalls							
Total Provided 74 Stalls							

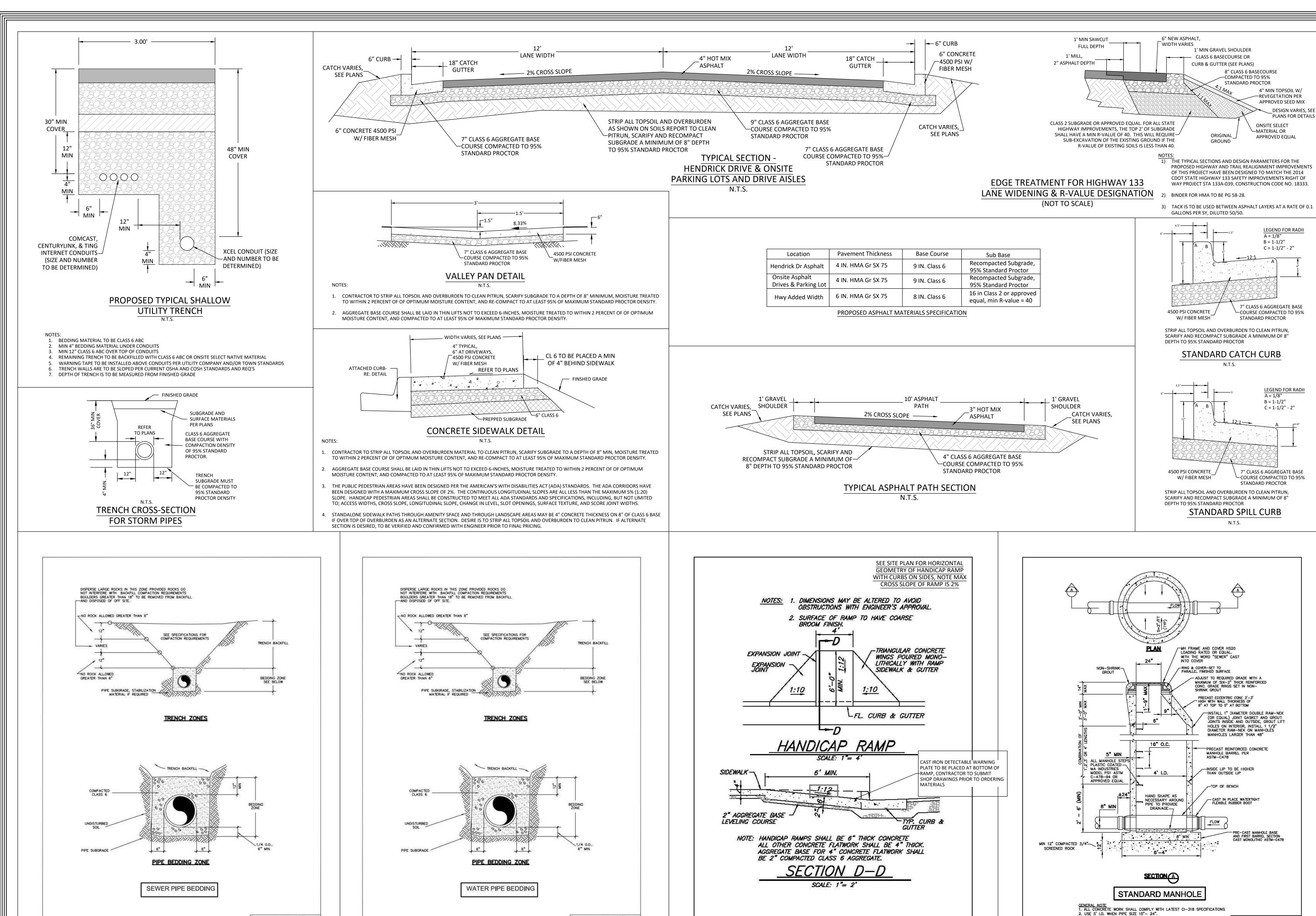





^{*}Gross floor Area includes 300 sf Outdoor Dining Area as shown in the site plan for use of parking requirements


^{**}Provided design layouts of the residential units, and possible retail/restaurant space are conceptual and subject to change.





reported By: SCHMUESER GORDON MEYER, INC. File: Corbondale water 08-Water PipeBed TOEN OF CARBONDALE STANDARD DETAILS. Date: 09/26/07 By: DAM

N U U

07-05-23

19215.02

APPLICATION

OLORAD

SITE PLAN,

REZONING,

OPME

MIXED

07/05/23

CONSTRUCTION

DETAILS

C-6.0

DRAWING NO.

DETAIL "A"

Prepared By: SCHMUESER GORDON MEYER, INC. File: Corbondole\san-sewer\01-SkiMH-DA TOWN OF CARBONDALE STANDARD DETAILS

REVISION

DATE

ANK

 $\mathbf{\Omega}$

Z

DATE:

JOB NO.

DRAWN BY

CHECKED BY

DESIGNED BY KTS

\2019\19215\CIVIL\CIVIL DWGS\PLOT\SHEET SET\19215-6

Prepared By: SCHMURSER GORDON MEYER, INC. File: Carbondale\san-sewer\11-SewerPipeBed-DE TOWN OF CARBONDALE STANDARD DETAILS Date: 09/26/07 By: MANA