

# **Pavement Management Plan**



# Town of China Grove

# 2024 Pavement Management Plan



Kisinger Campo & Associates, Corp. 305 S. Main Street Kannapolis, NC 28081 Firm License C-1506

Roger D. Jones, PE rjones2@kcaeng.com C: 336.240.1952

Prepared For:

# Town of China Grove

333 N Main Street China Grove, NC 28203

China Grove Manager: China Grove GIS Planner: Franklin D. Gover, III | AICP, CLGFO, MPA, CFM Alana Sweatt, GISP

China Grove Town Council:

Rodney Philips, Mayor Wayne Starnes, Mayor Pro-Tem Don Bringle Arthur Heggins Cheryl Sheets Lee Withers

Prepared By:

Kisinger Campo & Associates, Corp.

305 S Main Street Kannapolis, NC 28081

# Firm License C-1506

KCA Project Number: 005-202318.00

Engineer of Record: Database Management: Pavement Inspection: Roger D. Jones, PE David Hubert, GISP Roger Jones, PE Cody Harward, EI Cody Funderburk



Roger D. Jones, PE North Carolina Registration 032092

### **Executive Summary**

This project is the 2024 Pavement Management Plan (PMP) for asphalt roadways owned and maintained by China Grove. A pavement management system is a tool, or set of tools, that specifically focus on a single asset – pavement. The goal of the system is to assist China Grove to maintain their network of safe and serviceable pavements in a cost-effective manner. Kisinger Campo and Associates Corp (KCA) worked in partnership with China Grove staff in the development of the Pavement Management Plan (PMP) to evaluate **20.4** centerline miles in China Grove's Street inventory using the methodologies specified in ASTM D6433 Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys.

All data collected was entered into PAVER<sup>™</sup> v7.0.11 for the determination of the overall Pavement Condition Index (PCI) of the roads.

Overall Project Goals include:

- Assessment of existing observable physical condition in accordance with ASTM D6433-03 Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys;
- Create PAVERtm database including historic projects, maintenance cost and strategies, and budget analyses;
- ✓ Development of a report detailing the recommended Maintenance and Rehabilitation Plan, including the Maintenance Strategy Policy for China Grove streets;
- ✓ Development of a PMP that will provide the basis of a Five-Year Capital Improvement Program (CIP) for roadway improvements.

Existing pavement condition was determined in accordance with ASTM D6433 *Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys.* The overall area weighted average Pavement Condition Index (PCI) for the asphalt roads was determined to be **58**. Qualitatively this score is considered *fair.* Predominant distress types found during inspection were alligator cracking, block cracking, longitudinal and transverse cracking, weathering, and rutting. Based on length of each road segment and the calculated PCI, 18.2% of China Grove's asphalt network is in *Good* condition, *22.3% is in Satisfactory* condition, 37.8% is in *Fair* condition, 17.1% is in *Poor* condition and 4.6% of the pavement network is *Failing*.

Currently, China Grove uses Powell Bill funds to contract routine maintenance of sidewalks, curb & gutter, and street repairs. China Grove Staff forecasts current pavement budget at \$120,000 annually.

Using the pavement survey, approximately \$147,000-\$253,000 of current maintenance has been identified to stabilize and slow an overall decline in network-level pavement condition.

Planning budget scenarios were run to evaluate various budget level's impact on projected network-level pavement conditions. The analysis indicates to improve the overall street condition, China Grove needs to develop a funding source to provide \$240,000 per year to resurface and rejuvenate pavement.

# **China Grove Recommendations:**

- Use available Powell Bill funds to hire an experienced company to apply rejuvenator to all streets that are equal to or greater than PCI 80. To achieve production pricing, minimum 50,000 square yards. To minimize mobilization cost, consider scheduling work when it is convenient for the contractor.
- ✓ Use available Powell Bill funds to hire a contractor to level ruts and sags in pavement simultaneously filling potholes. Using an experienced local company will likely be the most cost effective. For best outcomes, perform this operation in warmer temperatures.
- ✓ Use Paver to document pavement maintenance projects for future pavement surveys.
- ✓ When funds are available, use the Major Projects list to develop Repair & Resurfacing Contracts. The project list will require on-site measurements to quantify work for Contracts. The current estimated cost is a high-level overview.

## **For Pavement Preservation:**

- In addition to the rejuvenation project on existing streets, use rejuvenator on newly resurfaced pavements. Apply rejuvenator initially on new asphalt and every 5 years thereafter on those pavements. Streets that are rejuvenated initially after resurfacing will benefit from at least one perhaps two future reapplications.
- ✓ If public is accepting <u>and</u> funds are limited, to extend the life of the pavement, contract crack sealing for larger block cracking and longitudinal & transverse cracking. To achieve best production pricing, fund projects for 50,000 lbs minimum. This preservation technique protects the subgrade from surface water intrusion and reduces potholes. Use crack sealing for streets that are five years or more from major work such as overlay or mat & seal. If a street is eligible for rejuvenation, apply the rejuvenator first -then perform crack sealing.

# When Additional Funding Sources are Available for Repairs & Resurfacing:

- Use mat seal and overlay, or to minimize cost, use pavement preservation technique of mat and seal if public is accepting.
- ✓ Mill, Seal, and Overlay on curb and gutter streets that have already had one overlay or utilize mat and seal if public is accepting.
- ✓ Load test streets to determine if structural deficiencies exist prior to all mat seal and asphalt overlays. It is also recommended to load test prior to mat and seal treatments. These streets may require full depth base repairs (deep patching) prior to overlay treatments.

# Contents

| Executive Summary                                       |    |
|---------------------------------------------------------|----|
| Introduction                                            | 7  |
| Background                                              | 7  |
| PAVER <sup>tm</sup> Pavement Management System Overview | 7  |
| Methodology                                             | 8  |
| Network Definition and Inventory                        | 8  |
| Network                                                 | 8  |
| Branches                                                | 8  |
| Sections                                                | 9  |
| Sample Units                                            | 9  |
| Distress Surveys                                        | 9  |
| Pavement Condition Index (PCI)                          | 10 |
| Structural Condition Index (SCI)                        | 10 |
| Condition Assessment                                    | 11 |
| Weathering and Raveling –                               | 12 |
| Longitudinal/Transverse Cracking –                      | 12 |
| Block Cracking –                                        | 12 |
| Alligator Cracking                                      | 12 |
| Edge Cracking                                           | 12 |
| Network Summary                                         | 13 |
| Pavement Condition Index (PCI)                          | 13 |
| Structural Condition Index (SCI)                        | 13 |
| Cause of Deterioration                                  | 15 |
| Condition Prediction                                    | 16 |
| Development of Deterioration Models                     | 16 |
| Pavement Life-cycle                                     | 17 |
| Construction History                                    | 18 |
| Model Review                                            | 18 |
| Pavement Treatment Selection                            | 19 |
| Short-term Maintenance and Rehabilitation Categories    | 19 |
| Long-term Maintenance and Rehabilitation Categories     | 20 |
| Pavement Treatment Matrix                               | 22 |

# January 2024 Town of China Grove - 2024 Pavement Management Plan Maintenance and Rehabilitation Plan ......25 Pavement Treatment Suggestions......25 Full-Depth Reclamation and Cold In-place Recycling......26

# Introduction

## Background

Based on 2022 Powell Bill Reporting (latest available) China Grove maintains 20.42 miles of streets.

Pavement typically represents the single most valuable physical asset owned and maintained by a municipality. In 2003, China Grove hired a consultant to survey the streets (17.06 miles). The consultant noted that 68% of the streets had some level of block cracking; almost 10% of streets had moderate or severe alligator cracking (this can be an indication of possible structural issues).

This report, the 2023 Pavement Management Plan, provides an update to the 2003 pavement study.

Goals of the project include:

- Assessment of existing observable physical condition in accordance with ASTM D6433-03 Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys;
- Create a PAVER<sup>tm</sup> database including historic projects, maintenance cost and strategies, and budget analyses;
- Development of a report detailing the recommended Maintenance and Rehabilitation Plan, including the Maintenance Strategy Policy for China Grove Streets;
- Development of a PMP that will provide the basis of a Five Year Capital Improvement Program (CIP) for street improvements.

## PAVER<sup>tm</sup> Pavement Management System Overview

Pavement Management, like other Asset Management practices, follows a cyclical process that begins with a basic understanding of system to be evaluated – in this case the pavement network – and proceeds through recommendations. A Pavement Management System (PMS) is a set of defined procedures for collecting, analyzing, maintaining, and reporting pavement data. The intent of a PMS is to assist in finding optimum strategies for maintaining pavements in an acceptable condition over a given period of time for the least cost. In a PMS objective information and data is presented so that decisions made are consistent, cost-effective, and defensible. Many factors beyond the condition assessment can, and do, influence the decisions made as a result of the PMS. These factors may include policy and economic influences internal to China Grove and China Grove's citizens—the residents who live, work, and ultimately pay for the pavement assets. Ultimately a PMS provides the basis for an informed understanding of the consequences of alternative decisions.

A Pavement Management Plan (PMP) is the written findings and recommendations supporting the PMS. The primary intent of the PMP is to develop a network-wide understanding of the conditions of all the paved surfaces within the network. A secondary intent is to develop a prioritization scheme to rate the pavements relative to each other, eventually developing remediation projects.

January 2024

China Grove's PMP has been developed to conform to the methodologies specified in the latest version of **ASTM D6433-18 Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys.** This Standard provides the procedural requirements for collecting and categorizing pavement distress data. All collected data were subsequently imported into a **PAVER<sup>tm</sup> v7.0.11** software for analysis. **PAVER** provides the means to evaluate existing and future budgetary needs against current and projected pavement conditions. The **PAVER** system provides agencies with tools to assist in:

- 1 Developing an inventory of their pavement network
- 2 Conducting pavement distress surveys
- 3 Assessment of pavement conditions
- 4 Development of models enabling the prediction of future pavement conditions
- 5 Analysis of funding scenarios
- 6 Planning of maintenance and rehabilitation activities
- 7 Reporting of findings

# Methodology

## **Network Definition and Inventory**

The initial step in the development of the PMP was to define the extent of the pavement that will be included in the PMP. All streets within China Grove are subdivided into **Networks**, **Branches**, and **Sections**. Each subdivision is described below:

### Network

A pavement *network* is simply a logical grouping of pavements to be managed (*Pavement Management for Airports, Roads, and Parking Lots* by M.Y. Shahin, 2005). For China Groves's PMP, the logical grouping is simply defined as China Grove's paved and maintained streets. All roads included in the inventory are graphically shown in **Map 1 – Pavement Network** in **Appendix A**. China Grove established Primary, Secondary, and Tertiary Network Ranking.

### Branches

Each network is separated into **branches**. Branches are readily identifiable parts of the pavement network and have a distinct use. For China Grove, KCA simply defined each named road as a branch. Within the PAVER database, each branch is identified in two ways:

1. By a textual descriptor called the "Branch Name"

This is the Branch or street name. Most agencies will have this in the centerline file already and GIS can be used to copy data into PAVER. If the names are compiled from multiple sources, consistency between the sources is important.

2. By a textual descriptor called the "Branch ID"

The BranchID must be unique for each branch in the system. PAVER imposes a 10 character limit and will automatically assign a unique ID. Some agencies prefer to have their own numeric street ID or Asset ID number assigned to each Branch. KCA often will assign a BranchID based in the branch name and ensuring that the BranchID is unique.

#### **Sections**

A pavement **section** is the smallest <u>management</u> unit for which road resurfacing will be planned. Sections typically share similar characteristics such as pavement structure, construction history, functional classification, and traffic (Shahin, 2005). Sections represent one of the most important elements within the network. Pavement conditions and work planning are aggregated at the section level. Like a branch, each section is uniquely identified. For China Grove, sections are defined from intersection to intersection, based on the GIS centerline shape file. This ensures consistency between the final PMP and GIS, and that pavements with similar characteristics are grouped as closely together as possible.

#### **Sample Units**

The quantity and quality of the *collected* data should be matched to the *intended use* of the data. This plan developed for China Grove is considered a networklevel PMP based on *ASTM D6433* methodology. ASTM D6433 is based on the premise that reasonable accuracy (95% confidence) can be achieved without 100% inspection. To accomplish this accuracy, each pavement section is broken into *sample units* and inspections are conducted on a specified number of sample units within a section.





Sample units are a conveniently defined portion of a pavement section designated only for the purpose of

pavement inspection (Shahin, 2005). A sample unit defined as  $2,500 \pm 1,000$  square feet. Figure 1 illustrates how the Branch (*Blue Street*) is conveniently divided into a Section (*B11*) and then sample units (*01, 02, 03, and 04*).

The number of samples per section is determined using Network Level Sampling Criteria. Table 1 specifies the criteria KCA uses to determine the number of sample units to be inspected per section. A minimum of one sample unit per section is inspected. KCA takes the additional step to geolocate each sample so that subsequent distress surveys are assured to

| Table 1: Network Level Sampling Criteria |                                 |  |
|------------------------------------------|---------------------------------|--|
| No. of Sample<br>Units in Section        | No. of Units to<br>be Inspected |  |
| 1 to 5                                   | 1                               |  |
| 6 to 10                                  | 2                               |  |
| 11 to 15                                 | 3                               |  |
| 16 to 40                                 | 4                               |  |
| Over 40                                  | 10%                             |  |

evaluate the same pavement surfaces. Future distress surveys should evaluate the same sample locations as this 2023 survey.

### **Distress Surveys**

All field distress information is collected manually. KCA staff utilizes a proprietary software tool for recording and organizing the collected data prior to import into PAVER. This tool integrates the network GIS centerline data with Global Positioning System (GPS) data, enabling staff to quickly and accurately define sample units and collect applicable data. Photographic documentation of the inspected pavement is also integrated into the inspection protocol with the

sample location and photographic data geo-referenced and stored in a database distinct from PAVER. Distress data were subsequently imported into PAVER, avoiding manual entry and maximizing database accuracy.

#### **Pavement Condition Index (PCI)**

The ASTM D6433 methodology defines 20 different pavement distresses that are used in determining the Pavement Condition Index (PCI). The PCI is a <u>quantitative</u> descriptor of the overall pavement condition based upon the *type*, *aerial extent*, and *severity* of each observed distresses. Numerically the PCI ranges between 0 and 100. A PCI of 100 represents a pavement completely free of distress whereas a PCI of 0 corresponds to a pavement that is failing. Each distress type, extent and severity is assigned a deduct value or weighing factor. A deduct value of 0 indicates that the distress is not present and therefore has no effect on pavement condition, whereas a value of 100 represents serious distress.

A Pavement Condition Rating (PCR) is a <u>qualitative</u> descriptor associated with ranges of PCI and is useful when describing the general condition of pavements. Table 2 shows the range of PCI values to which each rating corresponds.

#### **Structural Condition Index (SCI)**

Like the PCI, the SCI is a quantitative descriptor of the pavement condition. The SCI however focuses on distresses that suggest that the roadway may be structurally deficient or that base failures are occurring. Table 3 lists the distress and severity levels that are used in the calculation of SCI for both asphalt and Portland cement pavements.

An analysis of the SCI along with the PCI is a very powerful tool in developing the PMP. Low PCIs and high SCIs suggest that the pavement may be structurally sound. Conversely, low PCIs and low SCIs indicate that the pavement likely has base-related failures. Each case would have very different repair strategies. The Structural Condition Rating (SCR), the <u>qualitative</u> descriptor associated with ranges of SCI, is also shown in Table 2 below.

January 2024

#### Table 2: PCI and SCI Condition and Range

| Pavement<br>Condition<br>Rating (PCR) | Pavement/<br>Structural<br>Condition Index<br>(PCI/SCI)<br>Range | General Description                                                                                                                                                                                               |
|---------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Good                                  | 81-100                                                           | Pavement has minor or no distresses and should require only routine maintenance.                                                                                                                                  |
| Satisfactory                          | 61-80                                                            | Pavement has scattered low-severity distresses that should require only routine maintenance.                                                                                                                      |
| Fair                                  | 41-60                                                            | Pavement has a combination of generally low- and medium-severity distresses. Near-term maintenance and repair needs may range from routine to major.                                                              |
| Poor                                  | 21-40                                                            | Pavement has low-, medium-, and high-severity distresses that<br>probably cause operational problems. Near-term maintenance and<br>repair needs may range from routine up to a requirement for<br>reconstruction. |
| Failing                               | 0-20                                                             | Pavement deterioration has progressed to the point that safe<br>operations may be compromised and likely has operational problems;<br>complete reconstruction of the road, including the base, may be<br>needed.  |

#### Table 3: SCI Distress Types and Severity

| , ut                  | Distresses     | Severity          |  |
|-----------------------|----------------|-------------------|--|
| Alligator<br>Cracking |                | Low, Medium, High |  |
| alt                   | Patching       | Medium, High      |  |
| Potholes              |                | Low, Medium, High |  |
| As                    | Rutting        | Medium, High      |  |
| + <del>0</del>        | Large Patching | Medium, High      |  |
| lan                   | Corner Break   | Low, Medium, High |  |
| ort                   | Divided Slab   | Low, Medium, High |  |
| <u> </u> 0            | Punchout       | Medium, High      |  |

## **Condition Assessment**

Both PCI and SCI were determined for each of the 274 individual pavement Sample locations and subsequently for the 197 roadway sections. The more common asphalt distresses found in China Grove include alligator cracking, block cracking, longitudinal and transverse cracking, weathering, and rutting. The distresses are further described as:

#### Weathering and Raveling -

Weathering is defined as the wearing-away of asphalt binder and fine-grained particles, whereas Raveling is the dislodging of coarse aggregate particles. Raveling may be caused by insufficient asphalt binder, poor mixture quality, insufficient compaction, segregation, or stripping.

#### Longitudinal/Transverse Cracking -

Longitudinal cracks are parallel to the pavement's centerline or laydown direction. They may be caused by poorly constructed paving lane joint, hardening of the asphalt, or daily temperature cycling. They can also be caused by a reflective crack caused by cracking beneath the surface course. Transverse cracks extend across the pavement at approximately right angles to the pavement centerline or direction of laydown. These types of cracks are not usually load-associated.

#### Block Cracking -

Block cracks are interconnected cracks that divide the pavement into approximately rectangular pieces. The blocks may range in size from approximately 1x1 foot to 10x10 feet. Block cracking is caused mainly by shrinkage of the asphalt concrete and daily temperature cycling, which results in daily stress/strain cycling. It is not load-associated. Block cracking usually indicates that the asphalt has hardened significantly. Block cracking normally occurs over a large portion of the pavement area, but sometimes will occur only in non-traffic areas.

#### Alligator Cracking -

Alligator or fatigue cracking is a series of interconnecting cracks caused by fatigue failure of the asphalt concrete surface under repeated traffic loading. Cracking begins at the bottom of the asphalt surface, or stabilized base, where tensile stress and strain are highest under a wheel load. The cracks propagate to the surface initially as a series of parallel longitudinal cracks. After repeated traffic loading, the cracks connect, forming many sided, sharp-angled pieces that develop a pattern resembling chicken wire or the skin of an alligator. The pieces are generally small and less than 1.5 feet on the longest side. It is important to note that Alligator cracking only occurs in areas subjected to repeated traffic loading, such as wheel paths. Pattern-type cracking that occurs over an entire area not subjected to loading is called "block cracking," which is not a load associated distress.

### Edge Cracking -

Edge cracks are parallel to and usually within 1 to 1.5 feet of the outer edge of the pavement. Typically edge cracking is caused by poor subgrade compaction or materials and the associated traffic loading.

#### **Network Summary**

As mentioned previously, network inventory data generally remains static over time. The pavement network for China Grove asphalt is summarized in Table 4. A single network was defined consisting of 82 individual branches with 197 sections. The total length of the asphalt network is 20.4 centerline miles with an area over 2.6 million square feet.

| Table | 4: | Network | Summary |
|-------|----|---------|---------|
|-------|----|---------|---------|

| Number of Branches                  | 82        |
|-------------------------------------|-----------|
| Number of Sections                  | 197       |
| Total Mileage (asphalt)             | 20.4      |
| Total Area (sq. ft. asphalt)        | 2,609,166 |
| Average Section Width (ft.)         | 24.5      |
| Average Section Length (ft.)        | 546.3     |
| Average Number of Lanes per Section | 2         |

#### **Pavement Condition Index (PCI)**

After the final importation of distress data, the PCI is calculated within PAVER for each sample. The results are then extrapolated to each section. **Map 2** in **Appendix A** shows the geographic distribution of PCI scores across the Roadway Network. The average PCI for all China Grove Streets in 2023 is **58**. Based on length of each street segment and the calculated PCI, 18.2% of China Grove's asphalt network is in **Good** condition, 22.3% is in **Satisfactory** condition, 37.8% is in **Fair** condition, 17.1% is in **Poor** condition, and 4.6% are **Failing**.

#### **Structural Condition Index (SCI)**

SCI values for asphalt roads within the network is a numeric average of **74.4**. This score indicates that most streets within the network do not appear to have structural issues. **Map 3** in **Appendix A** shows the geographic distribution of SCI scores across the Street Network.

| Pavement Condition Rating | Sections | Length (miles) | Pavement Area<br>(SF) | Average PCI |
|---------------------------|----------|----------------|-----------------------|-------------|
| 80 to 100 - Good          | 38       | 3.7            | 460,464               | 88.2        |
| 60 to 80 - Satisfactory   | 45       | 4.5            | 622,090               | 71.0        |
| 40 to 60 - Fair           | 68       | 7.7            | 982,103               | 51.0        |
| 20 to 40 - Poor           | 36       | 3.5            | 435,302               | 32.9        |
| 0 to 20 - Failing         | 10       | 0.9            | 109,206               | 12.1        |
|                           | 197      | 20.4           | 2,609,166             | 57.5        |

#### Table 5: Pavement Condition Summary

January 2024

#### Table 6: Structural Condition Summary

| Structural Condition Rating | Sections | Length (miles) | Pavement Area<br>(SF) | Average SCI |
|-----------------------------|----------|----------------|-----------------------|-------------|
| 80 to 100 - Good            | 94       | 9.4            | 1,216,798             | 95.6        |
| 60 to 80 - Satisfactory     | 51       | 5.1            | 676,705               | 67.8        |
| 40 to 60 - Fair             | 35       | 4.2            | 519,539               | 50.1        |
| 20 to 40 - Poor             | 14       | 1.5            | 176,370               | 30.5        |
| 0 to 20 - Failing           | 3        | 0.2            | 19,754                | 8.4         |
|                             | 197      | 20.4           | 2,609,166             | 74.4        |

#### Figure 2: PCI Distribution





#### **Figure 3: SCI Distribution**

#### **Cause of Deterioration**

The analysis above is per the ASTM D6433 standard. From these index calculations it is apparent that the overall PCI is in fair condition, and structurally the streets are in satisfactory condition. Additional inferences can be made of the pavement condition based on the underlying causes of pavement distresses: *Load*, *Climate and Durability*, or *Other* factors.

Load – Alligator Cracking, Edge Cracking, Potholes, Rutting, and Shoving

**Climate and Durability** – Block Cracking, Longitudinal and Transverse Cracking, Weathering, and Raveling

**Other** – Bleeding, Bumps and Sags, Corrugations, Depressions, Lane/Shoulder drop-off, Patching, Polished Aggregate, Railroad Crossings, Slippage Cracking, and Swelling

For the China Grove streets, 74% of the overall condition of the pavement can be attributed to climate and durability issues with the remaining 26% attributed to load or other issues.

#### Figure 4: Causes of Asphalt Deterioration



As will be discussed later in this report, one method to help reduce the effects of weathering and raveling is using preventive treatments such as a rejuvenator. The purpose of a rejuvenator is to soften the stiffness of the oxidized pavement surface and re-introduce maltenes to extend the life of the pavement.

### **Condition Prediction**

The ability to forecast pavement conditions based on available funding is a key component of the PMP. This provides China Grove with the tools necessary to make informed decisions on selecting the correct pavement repair techniques, analyze various funding scenarios, and ultimately develop projects for the preservation or restoration of the paved surfaces.

#### **Development of Deterioration Models**

Pavement will deteriorate. No matter how well a road is originally constructed, the effects of traffic loads and climate will take a toll on the road surface over time. The age of the pavement and the rate at which the deterioration occurs become important considerations when developing asset management strategies for the PMP.

#### **Pavement Life-cycle**

Figure 5 depicts a widely published pavement deterioration curve. Several conclusions can be drawn from this curve including the overall life expectancy of the pavement and the relative rate of deterioration based on the age of the pavement. The shape of the curve infers that early in pavement's life, the condition remains good for many years before any appreciable maintenance is needed. As a pavement passes the midpoint in its life-cycle, the rate of deterioration can rapidly increase. The curve shown in Figure 5 was derived based on an assumed 30-year life expectancy, and that 40% of a pavement's deterioration occurs within the first 75% of a pavement's expected life. The next 40% of the deterioration and time has been widely referenced as being typical of pavement deterioration. Additionally, the relationship suggests that conducting *preventative* 

#### Figure 5: Typical Deterioration Curve



*maintenance* early in the pavement's life cycle can delay significant deterioration and thereby save considerable funds when compared to conducting major maintenance later in the pavement's life.

Development of appropriate deterioration curves provide a basis for *predictive* condition forecasting. A typical curve such as the one discussed above can be used but may not accurately represent the specific conditions of China Grove's network. Deterioration models can be developed specific to a pavement network by evaluating historic PCI values against the age of the pavement. With sufficient data, multiple models may be developed based on the use of the street. The expected deterioration of arterial and collector streets may vary from a model developed for residential roads.

#### **Construction History**

Historic construction data helps to define the deterioration curves by establishing the point in time when the pavement was new (time=0, PCI=100). Inspection data establish specific points along the deterioration curve. As additional inspections data is collected and work history added to the Pavement Management System, refinements can be made to the models improving the overall ability of the model to predict future conditions of the road network.

Going forward, China Grove can document maintenance activities such as rejuvenation, leveling, pothole filling, etc. and that will have a positive impact on the PCI. Dates of major maintenance activities can be used to establish the point in time when the pavement was new (time=0, PCI=100).

#### **Model Review**

KCA is using a straight-line model of deterioration based on a pavement life-cycle of 33 years. As additional inspection cycles are complete in future years and maintenance activities (major and minor) are documented, it is recommended that the deterioration model be re-evaluated and updated to reflect true conditions.

#### Figure 6: Deterioration Models



#### **Pavement Treatment Selection**

Selection of specific projects is an iterative process that must incorporate technical and nontechnical information. Data collected in this PMP plays a very important role in the decision process, but as pointed out in *Pavement Management for Airports, Roads, and Parking Lots* by M.Y. Shahin, 2005, "the PCI by itself is not sufficient to identify the needed specific M&R type." A single numeric value such as the PCI can indicate a general level of M&R needs, but it is also important to understand the cause (structural, climate, or other) of individual distresses that make up the PCI score. Additionally, factors such as funding, political desires, citizen complaints, etc. often influence project selection.

At the network-level, the goals of the PMP are to gain an understanding of how pavement conditions can be expected to respond to programmatic funding levels, and to develop optimum combinations of potential pavement M&R treatments and network sections – the right treatment for the right location at the right time.

#### Short-term Maintenance and Rehabilitation Categories

PAVER uses several categories of M&R in the planning of potential pavement treatments. Specific treatment options can be suggested when the planning horizon, or the length of the planning time period is very short – typically less than one year. In these cases, the change in pavement conditions between distress identification and repair is negligible. Therefore, specific repair strategies or proposed actions can be specified with some certainty. M&R categories included as short term include Localized Safety and Localized Preventive. Note that both Localized Safety and Localized Preventive M&R activities are considered part of China Grove's <u>routine</u> maintenance program (utilizing Powell Bill Funds), not major <u>capital</u> maintenance. Each category is presented below for reference:

#### Localized Safety M&R

Localized Safety M&R is defined as the localized distress repair needed to keep the pavement operational in a safe condition. This type of maintenance has a very short planning horizon if any at all. It may also be referred to as safety maintenance, stop-gap maintenance, and operational maintenance. Table 7 lists distress severity and type along with proposed remediation actions for Localized Safety M&R.

|               | Description Proposed Action |                                    |
|---------------|-----------------------------|------------------------------------|
| High          | BUMPS/SAGS                  | Leveling, Shallow Patching         |
| High          | CORRUGATION                 | Shallow Patching                   |
| High          | LANE / SHOULDER DROP        | Shoulder leveling                  |
| High          | PATCH/UTILITY CUT           | Leveling, Shallow or Deep Patching |
| High & Medium | POTHOLE                     | Filling, Deep Patching             |
| High          | RUTTING                     | Leveling, Shallow Patching         |
| High          | SHOVING                     | Shallow Patching                   |
| High          | SLIPPAGE CRACKING           | Shallow Patching                   |

#### Table 7: Localized Safety M&R Policy

#### Localized Preventive M&R

Localized Preventive M&R activities are performed with the primary objective of slowing the rate of deterioration and are applied at the location of individual distresses. For asphalt pavement it can include activities such as leveling, filling potholes, crack sealing, and deep and shallow patching. Localized PM differs from Global PM (described below) in that it typically is not applied to pavement outside of the location of the distress. Table 8 lists distress severity and type along with proposed remediation actions for Localized Preventive M&R.

| Severity              | Description               | Proposed Action                   |
|-----------------------|---------------------------|-----------------------------------|
| High & Medium         | ALLIGATOR CR              | Deep Patching (conduct load test) |
| High & Medium         | BLOCK CRACKING            | Crack Sealing                     |
| Medium                | BUMPS/SAGS                | Leveling or Shallow Patching      |
| High                  | BUMPS/SAGS                | Leveling or Deep Patching         |
| High                  | CORRUGATION               | Deep Patching                     |
| Medium                | CORRUGATION               | Shallow Patching                  |
| High & Medium         | DEPRESSION                | Leveling or Deep Patching         |
| Medium                | EDGE CRACKING             | Crack Sealing                     |
| High                  | EDGE CRACKING             | Shallow Patching                  |
| High                  | JOINT REFLECTIVE CRACKING | Shallow Patching                  |
| Medium                | JOINT REFLECTIVE CRACKING | Crack Sealing                     |
| High & Medium         | LANE / SHOULDER DROP      | Shoulder leveling                 |
| High                  | L & T CRACKING            | Crack Sealing or Shallow Patching |
| Medium                | L & T CRACKING            | Crack Sealing                     |
| High                  | PATCH/UTILITY CUT         | Leveling or Deep Patching         |
| High, Medium &<br>Low | POTHOLE                   | Fill or Deep Patching             |
| High                  | RUTTING                   | Leveling or Deep Patching         |
| Medium                | RUTTING                   | Leveling or Shallow Patching      |
| High & Medium         | SHOVING                   | Grinding (Localized)              |
| High & Medium         | SLIPPAGE CRACKING         | Shallow Patching                  |

#### Table 8: Localized Preventive M&R Policy

#### Long-term Maintenance and Rehabilitation Categories

Long Term M&R categories include Global Preventive and Major. In these cases, the time between pavement distress identification and repair may be several years. The change in pavement condition, and even the change in identified distresses could be appreciable. Therefore, specific repair strategies or proposed actions are suggested as network-level planning guidelines. Field investigations will need to be performed to bring projects to contract-level.

#### **Global Preventive M&R**

Global Preventive M&R is a maintenance activity applied to entire pavement section to extend the pavement life and reduce cost of maintenance. China Grove has aging pavement which exhibits weathering. Rejuvenation is a cost-effective solution to reduce weathering. An emulsified liquid containing maltenes is sprayed across the entire pavement. This process reintroduces maltenes into the pavement to soften the pavement reducing oxidation and cracking, yielding a longer pavement life.

| Severity              | Description           | Proposed Action                 |
|-----------------------|-----------------------|---------------------------------|
| High, Medium &<br>Low | POLISHED AGGREGATE    | thin overlay                    |
| High, Medium &<br>Low | BLEEDING              | thin overlay (skin patch)       |
| High, Medium &<br>Low | BLOCK CRACKING        | Crack seal, and/or Rejuvenation |
| High, Medium &<br>Low | WEATHERING / RAVELING | Rejuvenation                    |
| High, Medium &<br>Low | L & T CRACKING        | Crack seal, and/or Rejuvenation |

#### Table 9: Global Preventive M&R Policy

NOTE: Crackseal Block Cracking except very tight groups- less than 1'x1')

#### Major M&R

Major M&R are maintenance activities applied to the entire section and are intended to correct or improve existing structural or functional requirements of the paved surface. It is important to note that Major M&R are the only type of maintenance activities for which the PCI values are returned to 100 after the treatment is applied.

#### Major M&R Approach

PAVER allows the user to select different approaches to identify potential projects. The **Minimum PCI** approach is basically a worst-first approach. This approach does not optimize budget spending but rather determines the funding needed to maintain the pavement condition at or above a specified minimum PCI value. The minimum value can vary based on street type or can vary in time. For example, the targeted PCI value may rise over several years in order to fund the program. In this approach the Major M&R costs are applied to each road section when the PCI is projected to reach the specified minimum value. Once this point is reach and Major M&R is applied, the PCI score is reset to 100 and no further treatment is applied until the minimum PCI is once again reached.

The **Critical PCI** approach is based on the concept that it is more cost-effective to maintain pavements above the *critical* PCI rather than below. The critical PCI is the point in the life of the pavement where the condition begins to rapidly deteriorate. The critical PCI can also be viewed as the point where the cost of local preventive maintenance starts to significantly increase. Typically, the critical PCI ranges from 50 to 75. For purposes of this report KCA is using a critical PCI of 55. Using this approach, PAVER is attempting to optimize the M&R budget using the following priority of M&R categories:

- 1. Localized Safety measures (Considered part of China Groves <u>routine</u> operating budget utilizing Powell Bill Funds)
- 2. Localized Preventive (Considered part of China Grove's <u>routine</u> operating budget utilizing Powell Bill Funds)
- 3. Global Preventive (Rejuvenator, for use on newly resurfaced streets)
- 4. Major above critical PCI
- 5. Major below critical PCI

After checking a section's PCI score in relation to the critical PCI, PAVER checks for structural deficiency. Structural deficiency is defined for asphalt pavement in the critical PCI approach as:

- Alligator Cracking (L, M & H) >0.5%
- Patching (M & H) >10%
- Potholes (L, M & H) >0.1%
- Rutting (M & H) >1.0%

#### **Pavement Treatment Matrix**

Many agencies have developed simplified decision trees or decision matrices relating the general type of pavement M&R with distress conditions. These decision matrices can be used to assist in the project planning phase of pavement management. A generalized decision matrix developed for China Grove is depicted below and consists of the five PCI Groups including a consideration of structural deterioration.

| Treatment Type                                                                                                                                                                    | Structural<br>Deterioration | PCR Condition<br>Group  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------|
| No Work                                                                                                                                                                           | No                          |                         |
| <b>Localized Safety</b> measures considered part of China Grove's routine operating budget utilizing Powell Bill Funds                                                            | Yes                         | 100-80 ( <b>Good</b> )  |
| <b>Localized Preventive</b> measures considered part of China Grove's routine operating budget utilizing Powell Bill Funds                                                        | No                          | 80-60(Satisfactory)     |
| <b>Localized Preventive</b> measures considered part of China Grove's routine operating budget utilizing Powell Bill Funds                                                        | Yes                         |                         |
| <b>Major Maintenance</b> (above Critical PCI) – if funds available Seal and Overlay or Mill and Overlay                                                                           | No                          | 60.40 ( <b>Fair</b> )   |
| <b>Major Maintenance</b> (below Critical PCI) –Seal and Overlay or Mill and Overlay with Localized Base Repairs                                                                   | Yes                         | 00-40 ( <b>Faii</b> )   |
| <b>Major Maintenance</b> (below Critical PCI) – Seal and Overlay or Mill Seal, and Overlay                                                                                        | No                          | 40.20 ( <b>Boor</b> )   |
| <b>Major Maintenance</b> (below Critical PCI) – Seal and Overlay or Mill, Seal, and Overlay with Base Repairs                                                                     | Yes                         | 40-20 ( <b>FOO</b> I)   |
| <b>Major Maintenance</b> (below Critical PCI) – Seal and Overlay or Mill and Overlay                                                                                              | No                          |                         |
| <b>Major Maintenance</b> (below Critical PCI) – Load Test then Seal and<br>Overlay or Mill and Overlay with Base Repairs, or Full Depth<br>Reclamation or Complete Reconstruction | Yes                         | 20-0 ( <b>Failing</b> ) |

#### Table 10: Decision Matrix for Asphalt

## **Funding Scenarios**

PAVER uses cost per work type for project level and short-term planning. Cost per condition is used for long term planning and to estimate budget needs. These costs are entered in PAVER in policy tables. The cost data used in this report are based on historic and relative bid data provided by KCA for asphalt products. It is important to note that while these cost estimates are based on the best available information, they do not include additional expense items which may be necessary such as drainage improvements or improvements required to meet the Americans with Disabilities Act (ADA). In many cases these additional costs can substantially increase the overall funding necessary to complete individual projects.

Table 11 below is a summary of the unit costs used in this report to provide the foundation for conducting the budget analysis.

| PCI | Unit Cost per Sq. Ft.<br>Typical M&R (Overlay/Seal)<br>Strategy rejuvenation & crack seal > PCI<br>80 |        | Unit Cost per Sq. Ft.<br>(Mill, Seal, Overlay) |
|-----|-------------------------------------------------------------------------------------------------------|--------|------------------------------------------------|
| 100 | Rejuvenation                                                                                          | \$0.14 | \$0.00                                         |
| 90  | Preventive /<br>Localized<br>Repairs /<br>Patching (crack<br>seal,                                    | \$0.24 | \$0.00                                         |
| 80  | rejuvenation)                                                                                         | \$0.34 | \$0.00                                         |
| 70  | Overlay/Seal or                                                                                       | \$0.40 | \$0.00                                         |
| 60  | Mill, Seal, and                                                                                       | \$1.56 | \$2.34                                         |
| 50  | Overlay                                                                                               | \$1.56 | \$2.34                                         |
| 40  | Overlay/Seal or                                                                                       | \$1.56 | \$2.34                                         |
| 30  | Mill, Seal, and                                                                                       | \$1.56 | \$2.34                                         |
| 20  | Overlay includes                                                                                      | \$2.06 | \$2.84                                         |
| 10  | repair                                                                                                | \$2.31 | \$3.09                                         |
| 0   | ]                                                                                                     | \$2.56 | \$3.34                                         |

## Table 11: Major M&R Unit Costs and PCI

# **Budget Findings**

Four different budget scenarios are presented below and provide an envelope of expected results based on potential funding levels. A \$0-based scenario represents a "do nothing" option. \$120,000 is the current budget China Grove Staff has for pavement management, \$240,000, and \$500,000 scenarios are also evaluated. Each forecast scenario assumes that 100% of the annual funding is applied to Major Maintenance & Rehabilitation (M&R) and Major Global Preventive. Based on the analysis, the network condition can be expected to deteriorate from current conditions if the funding level remains at \$120,000 annually. Conversely, an increase of the network PCI can be expected if the funding in increased to \$240,000 or more annually. The model predicts funding of \$500,000 will raise and maintain the PCI in the *Good* range.

January 2024

It is recommended to seek or raise funding to \$240,000 per year. This realistic minimum would increase the current average PCI, moving Pavement Maintenance in a positive direction. The results of the funding evaluations are presented in Figure 7 below.



#### Figure 7: Budget / PCI Forecast

## **Maintenance and Rehabilitation Plan**

#### **Pavement Treatment Suggestions**

Given current funding, China Grove should use Powell Bill Funds to rejuvenate weathered pavement that has a PCI of 80 or higher, then fill potholes, level ruts, sags, and depressions. Rejuvenation requires a specialty company. All Streets with a PCI of 80 or higher should have rejuvenator applied. The asphalt repairs can be accomplished most effectively using smaller local asphalt paving companies. KCA recommends finding up to three qualified local or nearby paving companies and let them bid the work. If your budget is less than \$30,000 then licensing is not required. If your budget is greater than \$30,000 licensing is required.

If funds are constrained and the public is accepting, the next level of recommended preservation treatment is crack sealing. This is effective to protect the subbase from water intrusion and slows/reduces/eliminates the formation of potholes. Use crack sealing on streets with larger block cracking, transverse and longitudinal cracking. Avoid crack sealing areas that are less than 1' x1'. China Grove will need to fund 50,000 lbs to get production pricing. Use a properly licensed qualified contractor with quality references (preferable NCDOT or municipal) for crack sealing. Use NCDOT approved materials for crack sealing. Use crack sealing if funding levels are low and if public is accepting. Treatment options that may be technically feasible may not be palatable to the residence due to treatment's impact on traffic or on the esthetics of the neighborhood.

Also, if the public is accepting, a proper street selection using mat and chipseal is an cost effective treatment especially to avoid milling.

KCA would welcome the opportunity to provide services to determine qualified bidders, develop contract, bid, and provide inspection services (including training staff) for asphalt repairs/overlays.

The following treatments are suggested to be included in China Grove's pavement maintenance program and are presented in very general terms.

#### Overlay / Mill and Overlay (Both cases with a mat seal)

This pavement treatment application is a process where a new layer of asphalt pavement is added to an existing surface, or the surface is milled, and replaced by a new layer of asphalt pavement. With the addition of a mat seal of 67 stone prior to overlay the pavement life can be greatly extended. Given the heavy cracking on most streets, a mat seal is needed to prevent/retard cracking reflecting through the new asphalt. When combined with preventive treatments such as a rejuvenator, the pavement life can be extended further.

Typically, an NCDOT asphalt specified pavement is applied in this process. The street is milled if the asphalt is above the gutter. The millings are taken to the asphalt plant for recycling. The street should be load tested after milling to ensure no full depth patching is needed. Once the surface area is milled away, the area is swept or cleaned with a pavement broom or surface vacuum truck. Then the area to receive '67 mat stone is prepared to receive the new surface by applying a thin asphalt emulsion tack coat. The '67 stone is placed in an even layer with a spreader and rolled. In the next step, the mat stone is tacked, and the new surface is placed with an asphalt paver. Finally, the placed pavement is immediately

compacted with a steel wheeled roller and followed by a pneumatic tire roller to compact the asphalt per the pavement specification being used on the project. Testing may occur and field inspection should be performed in this process to ensure the contractor has provided a satisfactory product and pavement in accordance with the pavement specification. This process is considered Major M&R because it provides replaced or additional structural capacity. As a result, the PCI of the roads is reset to 100.

#### Mill and Overlay with Deep Patching

This pavement treatment application is identical to the Mill and Overlay described above with the exception that base repairs may be necessary. Mat seal may not be needed. Base material may need to be removed and replaced or reworked to achieve the proper density and then overlaid with asphalt. It is assumed that some streets will require some level of patch repair. As a result, the PCI of the roads is reset to 100.

#### Full-Depth Reclamation and Cold In-place Recycling

Full-Depth Reclamation (FDR) and Cold In-place Recycling (CIR) are very similar processes. In both cases a portion of the base material is uniformly crushed, pulverized and blended with the existing surface asphalt to form a new composite base material. The new composite material can be mixed with an asphalt emulsion or calcium chloride to increase the stability of the new base. This process completely rehabilitates and reinforces the structural strength of the underlying base of the road. The new road base is then surfaced with conventional asphalt equipment. The major benefits in these methods are that the road base is rehabilitated, and majority of existing material are recycled on-site reducing/negating the expense of removing and disposing of the material off-site. As a result, the PCI of the roads is reset to 100.

#### Rejuvenation

As asphalt ages, the asphalt binder starts to oxidize and becomes brittle. This is the *weathering* process. The brittleness of the asphalt can cause the aggregate to dislodge. This is *raveling*. The purpose of a rejuvenator is to soften the stiffness of the oxidized pavement surface to extend the life of the pavement. The rejuvenator product must be able to soften the upper 3/8-inch to ½-inch and add maltenes into the pavement. Rejuvenators should be allied to relatively new asphalt and then re-applied periodically (every 5 years). Rejuvenation also has benefits for older pavements with a PCI at and above 80. If other maintenance procedures such as cracksealing or fog sealing are planned, these should occur after rejuvenation is completed. Depending on distress patterns, rejuvenator can be applied effectively two or three times. Over the course of the first 10-15 years, Rejuvenation typically boosts the PCI three points by slowing the deterioration.

#### Leveling

A small paving machine is used to level ruts, depressions, sags, and sunken utility cuts. As the paving crew is moving through an area, they can also fill potholes. This maintenance procedure will provide needed repairs, improve ride quality, and show the Town is aggressively repairing streets. This can have a positive impact on the PCI as it changes the distress pattern to light patching. Note: if major cracking is evident this may require full depth base repair prior to leveling. This type of work repairs current conditions and preps the street for future resurfacing.

## **Suggested Projects**

Selection of specific projects is an iterative process that must incorporate technical and nontechnical information. Data collected in this PMP plays a very important role in the decision process, but as pointed out in *Pavement Management for Airports, Roads, and Parking Lots* by M.Y. Shahin, 2005, "the PCI by itself is not sufficient to identify the needed specific M&R type." A single numeric value such as the PCI can indicate a general level of M&R needs, but it is also important to understand the cause (structural, climate, or other) of individual distresses that make up the PCI score. Additional factors such as funding, political desires, citizen complaints, etc. often influence policy and project decisions.

China Grove Projects were selected using Paver recommendations (long-term most cost-effective selections) and Town Staff / KCA guidance. Major throughfare streets were held off the current project list due to expense and to be able to pave end to end. A few streets were held because of remoteness to current projects to wait for future nearby streets to be added and one was held due to nearby residential construction.

### **China Grove Recommendations:**

Localized Maintenance/Prevention Treatments:

- Use available Powell Bill funds (\$120,000 per year) to rejuvenate pavements with a PCI of 80 or greater. (Review street selection with rejuvenation contractor's representative)
- ✓ Use available Powell Bill funds (\$120,000 per year) to hire a contractor to level ruts, depressions, and sags in pavement while simultaneously filling potholes. Using an experienced local company will likely be the most cost effective. For best results, perform this work in warmer temperatures.
- ✓ If citizens are accepting <u>and</u> funding is constrained, use future Powell Bill funds to contract crack sealing for larger block cracking and longitudinal & transverse cracking. To achieve best production pricing fund 50,000 lbs minimum per contract. To be most cost effective, crack sealing should be used on streets that are not scheduled for resurfacing within 5 years.

### Major Capital Maintenance:

- ✓ Develop funding for major repair/resurfacing projects. Economic Development may increase available funding opportunities. Realistically a minimum of \$240,000 per year should be dedicated to Major.
- ✓ Use mat seal, and overlay or can use preservation technique of mat and surface treatment if public is accepting (less expensive treatment).
- ✓ Mill, Seal, and Overlay on curb and gutter streets that have already had one overlay or if public is accepting can use a mat and seal for overlay to avoid milling.
- ✓ Use rejuvenator for pavements recently resurfaced. Apply rejuvenator as soon as possible on new asphalt and reapply every 5 years thereafter (one or two applications)

Load test streets to determine if structural deficiencies exist prior to mat and asphalt overlays. It is also recommended to load test prior to mat and seal treatments. To repair structural deficiencies, these streets may require full depth base repairs (deep patching) prior to overlay treatments.

**Appendix B** contains lists of streets for rejuvenation and asphalt leveling repair projects. Appendix B also contains specific road sections that were selected as potential resurfacing projects to be completed over five years using Powell Bill funds (after rejuvenation and leveling repairs are completed). These projects were planned assuming a target budget of approximately \$120,000 of Powell Bill funds each year for the next seven years. For resurfacing and cost efficiency the annual project budget exceeds \$120,000 in some years. The total expenditure over five to seven years is estimated to be \$600,000- \$840,000. After rejuvenation and asphalt leveling projects, funding should be dedicated to Major Maintenance and Repair (M&R) and Global Preventative on new pavements.

## **Long-term Project Analysis**

Using high level network analysis, an estimated minimum cost of \$4,500,000 is required to bring all streets to a PCI of 100. Currently the Paver program estimates \$240,000 per year is needed to maintain and improve the street conditions, increasing the PCI. (see figure 7). Using \$120,000 per year for pavement preservation (Rejuvenation & Leveling/Potholes), then Major M&R (resurfacing) with Global Preventive (rejuvenation) on newly resurfaced streets, will slow deterioration to allow time for further funding to be developed.

January 2024

# **Appendix A - Maps**

DocuSign Envelope ID: FD6E72CB-F7E5-47BF-AC8D-1DB4B78A06F6



DocuSign Envelope ID: FD6E72CB-F7E5-47BF-AC8D-1DB4B78A06F6



DocuSign Envelope ID: FD6E72CB-F7E5-47BF-AC8D-1DB4B78A06F6



32

DocuSign Envelope ID: FD6E72CB-F7E5-47BF-AC8D-1DB4B78A06F6



# **Appendix B – Suggested Projects**

# January 2024

# 2024 Network Level Rejuvenation Project List

|                 | 2024 NETWORK LEVEL REJUVENATION PROJECT LIST Estimated |                                  |                               |         |      |              |  |  |  |  |
|-----------------|--------------------------------------------------------|----------------------------------|-------------------------------|---------|------|--------------|--|--|--|--|
|                 | Section                                                | on                               |                               | Area    |      | Rejuvenation |  |  |  |  |
| Branch Name     | ID                                                     | From                             | То                            | (Sa Ft) | PCI  | Cost         |  |  |  |  |
| BERRYBETH CIR   | 020                                                    | GOOSEBERRY TR                    | DAMSENBERRY WAY               | 16,349  | 93.8 | \$2,289      |  |  |  |  |
| BERRYBETH CIR   | 030                                                    | DAMSENBERRY WAY                  | GOOSEBERRY TR                 | 21,554  | 98.8 | \$3,018      |  |  |  |  |
| CENTRAL AV      | 030                                                    | WALNUT ST                        | FRONT ST                      | 7,144   | 93.1 | \$1,000      |  |  |  |  |
| CENTRAL AV      | 010                                                    | CHERRY ST                        | 1ST AV                        | 4,566   | 92.8 | \$639        |  |  |  |  |
| CENTRAL AV      | 040                                                    | FRONT ST                         | 1ST AV                        | 19,415  | 92.5 | \$2,718      |  |  |  |  |
| CENTRAL AV      | 020                                                    | 1ST AV                           | WALNUT ST                     | 7,420   | 84.6 | \$1,039      |  |  |  |  |
| CENTRAL AV      | 050                                                    | 1ST AV                           | ELM ST                        | 2,770   | 90.5 | \$388        |  |  |  |  |
| CHERRY ST       | 020                                                    | ROSE AV                          | CENTRAL AV                    | 7,096   | 92.7 | \$993        |  |  |  |  |
| DAMSENBERRY WAY | 020                                                    | GOOSEBERRY TR                    | BERRYBETH CIR                 | 13,349  | 98.6 | \$1,869      |  |  |  |  |
| DOTS CIR        | 040                                                    | PARK ST                          | W KETCHIE ST                  | 11,840  | 82.1 | \$1,658      |  |  |  |  |
| E CENTERVIEW ST | 020                                                    | N BOSTIAN ST/S BOSTIAN ST        | BROOKWOOD CIR                 | 13,250  | 87.4 | \$1,855      |  |  |  |  |
| E CENTERVIEW ST | 010                                                    | N MAIN ST/S MAIN ST/W CENTERVIEV | V SIN BOSTIAN ST/S BOSTIAN ST | 22,138  | 87.5 | \$3,099      |  |  |  |  |
| E CENTERVIEW ST | 030                                                    | BROOKWOOD CIR                    | N US 29 HWY/S US 29 HWY       | 27,744  | 91.6 | \$3,884      |  |  |  |  |
| E LIBERTY ST    | 030                                                    | N HARRIS ST                      | RAILROAD AV                   | 6,150   | 87.4 | \$861        |  |  |  |  |
| E LIBERTY ST    | 040                                                    | RAILROAD AV                      | N BOSTIAN ST                  | 5,099   | 87.6 | \$714        |  |  |  |  |
| HICKORY NUT LN  | 020                                                    | LAUREL ST                        | CUL-DE-SAC                    | 6,924   | 82.3 | \$969        |  |  |  |  |
| HICKORY NUT LN  | 010                                                    | WILSON ST                        | LAUREL ST                     | 19,910  | 85.1 | \$2,787      |  |  |  |  |
| N FRANKLIN ST   | 040                                                    | W KETCHIE ST                     | ROSS ST                       | 11,554  | 82.2 | \$1,618      |  |  |  |  |
| N HARRIS ST     | 010                                                    | DEAD END                         | E KETCHIE ST                  | 20,346  | 91.3 | \$2,848      |  |  |  |  |
| PARK ST         | 060                                                    | ELIZABETH ST                     | DOTS CIR                      | 8,028   | 82.8 | \$1,124      |  |  |  |  |
| RAILROAD AV     | 010                                                    | E LIBERTY ST                     | RIDGE ST                      | 10,294  | 80.8 | \$1,441      |  |  |  |  |
| RAILROAD AV     | 030                                                    | HUFFMAN ST                       | CUL-DE-SAC                    | 12,995  | 86.0 | \$1,819      |  |  |  |  |
| RAILROAD AV     | 020                                                    | RIDGE ST                         | HUFFMAN ST                    | 18,992  | 89.0 | \$2,659      |  |  |  |  |
| S FRANKLIN ST   | 040                                                    | W FIRST ST                       | STEVENS ST                    | 13,537  | 81.4 | \$1,895      |  |  |  |  |
| S FRANKLIN ST   | 050                                                    | STEVENS ST                       | STEVENS ST                    | 1,671   | 80.4 | \$234        |  |  |  |  |
| S FRANKLIN ST   | 070                                                    | KIRK ST                          | W THOM ST                     | 21,335  | 81.5 | \$2,987      |  |  |  |  |
| STEVENS ST      | 020                                                    | S FRANKLIN ST                    | S MYRTLE AV                   | 11,637  | 83.8 | \$1,629      |  |  |  |  |
| SWINK ST        | 010                                                    | N MAIN ST                        | TATUM ST                      | 4,294   | 94.8 | \$601        |  |  |  |  |
| SWINK ST        | 020                                                    | TATUM ST                         | N FRANKLIN ST                 | 14,681  | 94.8 | \$2,055      |  |  |  |  |
| W THOM ST       | 010                                                    | S MAIN ST                        | S FRANKLIN ST                 | 12,202  | 83.9 | \$1,708      |  |  |  |  |
| W THOM ST       | 020                                                    | S FRANKLIN ST                    | S MYRTLE AV                   | 11,420  | 88.4 | \$1,599      |  |  |  |  |
| WALNUT ST       | 020                                                    | ROSE AV                          | CENTRAL AV                    | 7,458   | 90.5 | \$1,044      |  |  |  |  |
| WALNUT ST       | 030                                                    | CENTRAL AV                       | 1ST AV                        | 5,578   | 81.2 | \$781        |  |  |  |  |
| WALNUT ST       | 050                                                    | 2ND AV                           | 3RD AV/WALNUT ST EX           | 5,060   | 93.4 | \$708        |  |  |  |  |
| WALNUT ST       | 040                                                    | 1ST AV                           | 2ND AV                        | 7,045   | 86.8 | \$986        |  |  |  |  |
| WALNUT ST       | 010                                                    | E THOM ST/S BOSTIAN ST           | ROSE AV                       | 10,317  | 94.2 | \$1,444      |  |  |  |  |
| W STOKES ST     | 010                                                    | DEAD END                         | MITCHELL AV                   | 9,298   | 90.0 | \$1,302      |  |  |  |  |
| WESTSIDE CIR    | 010                                                    | HARRY ST                         | SHORT ST                      | 30,004  | 86.2 | \$4,201      |  |  |  |  |

50,000 sy minimum for production pricing - this list meets that threshold

**460,464** sq ft total 51,163 sy yds total

#### 2024 NETWORK LEVEL REJUVENATION PROJECT LIST

#### RECENT NOVEMBER ADDITIONS AFTER EVALUATION WAS COMPLETED

| Name             | From           | To               | Area<br>(Sɑ Ft) | PCI  | Estimated<br>Rejuvenation<br>Cost |
|------------------|----------------|------------------|-----------------|------|-----------------------------------|
| BERRYBETH CIR    | W CHURCH ST    | GOOSEBERRY TRAIL | 20,760          | 100* | \$2,906                           |
| BERRYBETH CIR    | BOYSENBERRY DR | GOOSEBERRY TRAIL | 11,016          | 100* | \$1,542                           |
| LIZBETH LN       | BERRYBETH CIR  | CUL DE SAC       | 4,268           | 100* | \$598                             |
| BOYSENBERRY DR   | W CHURCH ST    | CUL DE SAC       | 30,668          | 100* | \$4,294                           |
| GOOSEBERRY TRAIL | BERRYBETH CIR  | DEAD END         | 20,570          | 100* | \$2,880                           |
| DAMSENBERRY WAY  | BOYSENBERRY DR | GOOSEBERRY TRAIL | 7,964           | 100* | \$1,115                           |

\*PCI estimated - these streets just received FDR and asphalt overlay

**95,246 sq ft total** 10,583 sy yds total \$13,334

COMBINED PROJECT TOTAL 555,710 sq ft total \$77,799 61,746 sy yds total

4.47 miles total

# 2024-2025 Asphalt Leveling and Pothole Repair Network Level List

|                  |         |                      |                   |              | Sample   | Distress | 5        | Sample  |
|------------------|---------|----------------------|-------------------|--------------|----------|----------|----------|---------|
|                  | Section |                      |                   | Distress     | Distress | Quantity | v        | Repair  |
| Branch Name      | ID      | From                 | То                | Description  | Quantity | Units    | Severity | Costs*  |
| BERRYBETH CIR    | 030     | DAMSENBERRY WAY      | GOOSEBERRY TR     | PATCH/UT CUT | 11       | SqFt     | L        | \$36    |
| BERRYBETH CIR    | 030     | DAMSENBERRY WAY      | GOOSEBERRY TR     | PATCH/UT CUT | 15       | SqFt     | L        | \$50    |
| HICKORY GROVE LN | 020     | W HILLSIDE DR        | SHUE RD           | RUTTING      | 48       | SqFt     | L        | \$158   |
| ARBOR DR         | 010     | W HILLSIDE DR        | SHUE RD           | DEPRESSION   | 12       | SqFt     | М        | \$40    |
| ARBOR DR         | 010     | W HILLSIDE DR        | SHUE RD           | PATCH/UT CUT | 63       | SqFt     | Н        | \$208   |
| ARBOR DR         | 010     | W HILLSIDE DR        | SHUE RD           | PATCH/UT CUT | 72       | SqFt     | L        | \$238   |
| SPRING BRANCH LN | 010     | MITCHELL AV          | W HILLSIDE DR     | PATCH/UT CUT | 24       | SqFt     | L        | \$79    |
| MITCHELL AV      | 080     | WILSON ST            | LAUREL ST         | PATCH/UT CUT | 135      | SqFt     | L        | \$446   |
| HICKORY NUT LN   | 010     | WILSON ST            | LAUREL ST         | PATCH/UT CUT | 84       | SqFt     | L        | \$277   |
| HICKORY NUT LN   | 020     | LAUREL ST            | CUL-DE-SAC        | PATCH/UT CUT | 52       | SqFt     | L        | \$172   |
| LAUREL ST        | 010     | WILSON ST            | HICKORY NUT LN    | PATCH/UT CUT | 18       | SqFt     | L        | \$59    |
| LAUREL ST        | 010     | WILSON ST            | HICKORY NUT LN    | DEPRESSION   | 16       | SqFt     | L        | \$53    |
| LAUREN GLEN DR   | 010     | W STOKES ST          | HIGHLAND RIDGE DR | DEPRESSION   | 20       | SqFt     | M        | \$66    |
| LAUREN GLEN DR   | 010     | W STOKES ST          | HIGHLAND RIDGE DR | PATCH/UT CUT | 254      | SqFt     | М        | \$838   |
| W STOKES ST      | 030     | LAUREN GLEN DR       | HIGHLAND RIDGE DR | DEPRESSION   | 40       | SqFt     | М        | \$132   |
| W STOKES ST      | 030     | LAUREN GLEN DR       | HIGHLAND RIDGE DR | DEPRESSION   | 16       | SqFt     | L        | \$53    |
| W STOKES ST      | 020     | MITCHELL AV          | LAUREN GLEN DR    | POTHOLE      | 1        | Count    | М        | \$5     |
| W STOKES ST      | 020     | MITCHELL AV          | LAUREN GLEN DR    | DEPRESSION   | 176      | SqFt     | М        | \$581   |
| W STOKES ST      | 020     | MITCHELL AV          | LAUREN GLEN DR    | RUTTING      | 203      | SqFt     | L        | \$670   |
| W STOKES ST      | 020     | MITCHELL AV          | LAUREN GLEN DR    | RUTTING      | 287      | SqFt     | Н        | \$947   |
| W STOKES ST      | 020     | MITCHELL AV          | LAUREN GLEN DR    | RUTTING      | 368      | SqFt     | М        | \$1,214 |
| W STOKES ST      | 010     | DEAD END             | MITCHELL AV       | PATCH/UT CUT | 110      | SqFt     | L        | \$363   |
| W VANCE ST       | 010     | E VANCE ST/N MAIN ST | MILLER ST         | PATCH/UT CUT | 26       | SqFt     | M        | \$86    |
| W VANCE ST       | 020     | MILLER ST            | MITCHELL AV       | PATCH/UT CUT | 185      | SqFt     | М        | \$611   |
| MILLER ST        | 010     | W VANCE ST           | W LIBERTY ST      | PATCH/UT CUT | 26       | SqFt     | М        | \$86    |
| ROSS ST          | 020     | N FRANKLIN ST        | W KETCHIE ST      | RUTTING      | 44       | SqFt     | L        | \$145   |
| ROSS ST          | 020     | N FRANKLIN ST        | W KETCHIE ST      | RUTTING      | 42       | SqFt     | Н        | \$139   |
| ROSS ST          | 020     | N FRANKLIN ST        | W KETCHIE ST      | RUTTING      | 36       | SqFt     | M        | \$119   |
| ROSS ST          | 020     | N FRANKLIN ST        | W KETCHIE ST      | PATCH/UT CUT | 71       | SqFt     | L        | \$234   |
| N FRANKLIN ST    | 050     | ROSS ST              | W CHURCH ST       | POTHOLE      | 1        | Count    | L        | \$5     |
| PARK ST          | 010     | N MAIN ST            | TATUM ST          | PATCH/UT CUT | 60       | SqFt     | M        | \$198   |
| PARK ST          | 010     | N MAIN ST            | TATUM ST          | POTHOLE      | 2        | Count    | L        | \$10    |
| PARK ST          | 040     | N MYRTLE AV          | N CLINTON ST      | PATCH/UT CUT | 70       | SqFt     | L        | \$231   |
| TATUM ST         | 010     | SWINK ST             | PARK ST           | DEPRESSION   | 16       | SqFt     | Н        | \$53    |
| TATUM ST         | 010     | SWINK ST             | PARK ST           | DEPRESSION   | 25       | SqFt     | М        | \$83    |

|               |         |               |              |              | Sample   | Distres | SS       | Sample  |
|---------------|---------|---------------|--------------|--------------|----------|---------|----------|---------|
|               | Section | on            |              | Distress     | Distress | Quanti  | itv      | Repair  |
| Branch Name   | ID      | From          | То           | Description  | Quantity | Units   | Severity | Costs*  |
| TATUM ST      | 010     | SWINK ST      | PARK ST      | POTHOLE      | 100      | Count   | Н        | \$500   |
| N CLINTON ST  | 020     | PARK ST       | W KETCHIE ST | PATCH/UT CUT | 10       | SqFt    | М        | \$33    |
| N CLINTON ST  | 020     | PARK ST       | W KETCHIE ST | DEPRESSION   | 36       | SqFt    | L        | \$119   |
| N CLINTON ST  | 020     | PARK ST       | W KETCHIE ST | PATCH/UT CUT | 260      | SqFt    | L        | \$858   |
| N CLINTON ST  | 010     | S CLINTON ST  | PARK ST      | DEPRESSION   | 75       | SqFt    | L        | \$248   |
| N CLINTON ST  | 010     | S CLINTON ST  | PARK ST      | DEPRESSION   | 75       | SqFt    | М        | \$248   |
| N CLINTON ST  | 010     | S CLINTON ST  | PARK ST      | PATCH/UT CUT | 36       | SqFt    | L        | \$119   |
| N CLINTON ST  | 010     | S CLINTON ST  | PARK ST      | DEPRESSION   | 30       | SqFt    | L        | \$99    |
| N CLINTON ST  | 010     | S CLINTON ST  | PARK ST      | PATCH/UT CUT | 367      | SqFt    | L        | \$1,211 |
| ELIZABETH ST  | 020     | AZALEA LN     | PARK ST      | POTHOLE      | 1        | Count   | L        | \$5     |
| ELIZABETH ST  | 020     | AZALEA LN     | PARK ST      | PATCH/UT CUT | 7        | SqFt    | М        | \$23    |
| AZALEA LN     | 010     | ELIZABETH ST  | DOTS CIR     | PATCH/UT CUT | 12       | SqFt    | Н        | \$40    |
| BARCLAY CT    | 010     | DOTS CIR      | CUL-DE-SAC   | PATCH/UT CUT | 50       | SqFt    | L        | \$165   |
| DOTS CIR      | 030     | AMHERST CT    | PARK ST      | PATCH/UT CUT | 34       | SqFt    | L        | \$112   |
| DOTS CIR      | 020     | BARCLAY CT    | AMHERST CT   | PATCH/UT CUT | 51       | SqFt    | Н        | \$168   |
| DOTS CIR      | 020     | BARCLAY CT    | AMHERST CT   | PATCH/UT CUT | 68       | SqFt    | М        | \$224   |
| S CLINTON ST  | 010     | N CLINTON ST  | LOUISE AV    | DEPRESSION   | 20       | SqFt    | L        | \$66    |
| S CLINTON ST  | 010     | N CLINTON ST  | LOUISE AV    | PATCH/UT CUT | 88       | SqFt    | L        | \$290   |
| S CLINTON ST  | 020     | LOUISE AV     | PATTERSON ST | DEPRESSION   | 10       | SqFt    | L        | \$33    |
| S CLINTON ST  | 020     | LOUISE AV     | PATTERSON ST | POTHOLE      | 10       | Count   | L        | \$50    |
| S CLINTON ST  | 020     | LOUISE AV     | PATTERSON ST | PATCH/UT CUT | 77       | SqFt    | jL.      | \$254   |
| S CLINTON ST  | 020     | LOUISE AV     | PATTERSON ST | PATCH/UT CUT | 16       | SqFt    | М        | \$53    |
| LOUISE AV     | 010     | S FRANKLIN ST | S MYRTLE AV  | POTHOLE      | 2        | Count   | L        | \$10    |
| S FRANKLIN ST | 020     | LOUISE AV     | PATTERSON ST | PATCH/UT CUT | 66       | SqFt    | М        | \$218   |
| S FRANKLIN ST | 020     | LOUISE AV     | PATTERSON ST | PATCH/UT CUT | 982      | SqFt    | L        | \$3,241 |
| CHINABERRY LN | 010     | PATTERSON ST  | DEAD END     | PATCH/UT CUT | 20       | SqFt    | М        | \$66    |
| CHINABERRY LN | 010     | PATTERSON ST  | DEAD END     | PATCH/UT CUT | 130      | SqFt    | L        | \$429   |
| CEDAR ST      | 010     | PATTERSON ST  | W FIRST ST   | PATCH/UT CUT | 56       | SqFt    | М        | \$185   |
| CEDAR ST      | 010     | PATTERSON ST  | W FIRST ST   | PATCH/UT CUT | 138      | SqFt    | L        | \$455   |
| CEDAR ST      | 020     | W FIRST ST    | STEVENS ST   | RUTTING      | 88       | SqFt    | Н        | \$290   |
| CEDAR ST      | 030     | STEVENS ST    | DEAD END     | PATCH/UT CUT | 18       | SqFt    | М        | \$59    |
| CEDAR ST      | 030     | STEVENS ST    | DEAD END     | RUTTING      | 72       | SqFt    | М        | \$238   |
| CEDAR ST      | 030     | STEVENS ST    | DEAD END     | DEPRESSION   | 24       | SqFt    | Н        | \$79    |
| S MYRTLE AV   | 010     | CUL-DE-SAC    | LOUISE AV    | DEPRESSION   | 15       | SqFt    | L        | \$50    |
| S MYRTLE AV   | 020     | LOUISE AV     | PATTERSON ST | POTHOLE      | 1        | Count   | L        | \$5     |

## 2024-2025 ASPHALT LEVELING AND POTHOLE REPAIR NETWORK LEVEL LIST

|               |         |               |               |              | Sample   | Distress |          | Sample  |
|---------------|---------|---------------|---------------|--------------|----------|----------|----------|---------|
| 200 00 000    | Section | R6_33         | 17. M         | Distress     | Distress | Quantity | 1        | Repair  |
| Branch Name   | ID      | From          | То            | Description  | Quantity | Units    | Severity | Costs*  |
| S MYRTLE AV   | 030     | PATTERSON ST  | W FIRST ST    | PATCH/UT CUT | 45       | SqFt     | L        | \$149   |
| S MYRTLE AV   | 030     | PATTERSON ST  | W FIRST ST    | POTHOLE      | 1        | Count    | L        | \$5     |
| S MYRTLE AV   | 030     | PATTERSON ST  | W FIRST ST    | DEPRESSION   | 90       | SqFt     | L        | \$297   |
| S MYRTLE AV   | 050     | STEVENS ST    | DEAD END      | RUTTING      | 120      | SqFt     | М        | \$396   |
| W FIRST ST    | 010     | S FRANKLIN ST | S MYRTLE AV   | PATCH/UT CUT | 300      | SqFt     | L        | \$990   |
| W FIRST ST    | 010     | S FRANKLIN ST | S MYRTLE AV   | PATCH/UT CUT | 306      | SqFt     | М        | \$1,010 |
| S FRANKLIN ST | 060     | STEVENS ST    | KIRK ST       | DEPRESSION   | 4        | SqFt     | L        | \$13    |
| S FRANKLIN ST | 060     | STEVENS ST    | KIRK ST       | BUMPS/SAGS   | 2        | Ft       | L        | \$7     |
| S FRANKLIN ST | 030     | PATTERSON ST  | W FIRST ST    | DEPRESSION   | 25       | SqFt     | L        | \$83    |
| S FRANKLIN ST | 030     | PATTERSON ST  | W FIRST ST    | PATCH/UT CUT | 72       | SqFt     | L        | \$238   |
| S FRANKLIN ST | 040     | W FIRST ST    | STEVENS ST    | DEPRESSION   | 4        | SqFt     | L        | \$13    |
| S FRANKLIN ST | 060     | STEVENS ST    | KIRK ST       | BUMPS/SAGS   | 2        | Ft       | L        | \$7     |
| WESTSIDE CIR  | 010     | HARRY ST      | SHORT ST      | DEPRESSION   | 21       | SqFt     | L        | \$69    |
| WESTSIDE CIR  | 010     | HARRY ST      | SHORT ST      | DEPRESSION   | 8        | SqFt     | L        | \$26    |
| WESTSIDE CIR  | 020     | SHORT ST      | HARRY ST      | DEPRESSION   | 15       | SqFt     | L        | \$50    |
| HARRY ST      | 040     | WESTSIDE CIR  | CORRELL ST    | PATCH/UT CUT | 12       | SqFt     | М        | \$40    |
| HARRY ST      | 040     | WESTSIDE CIR  | CORRELL ST    | PATCH/UT CUT | 36       | SqFt     | L        | \$119   |
| HARRY ST      | 040     | WESTSIDE CIR  | CORRELL ST    | PATCH/UT CUT | 80       | SqFt     | Н        | \$264   |
| HARRY ST      | 040     | WESTSIDE CIR  | CORRELL ST    | DEPRESSION   | 267      | SqFt     | L        | \$881   |
| KIRK ST       | 040     | HARRY ST      | DEAD END      | PATCH/UT CUT | 648      | SqFt     | L        | \$2,138 |
| KIRK ST       | 010     | S MAIN ST     | S FRANKLIN ST | PATCH/UT CUT | 45       | SqFt     | Н        | \$149   |
| KIRK ST       | 010     | S MAIN ST     | S FRANKLIN ST | PATCH/UT CUT | 40       | SqFt     | М        | \$132   |
| KIRK ST       | 010     | S MAIN ST     | S FRANKLIN ST | PATCH/UT CUT | 125      | SqFt     | L        | \$413   |
| S MYRTLE AV   | 060     | KIRK ST       | W THOM ST     | PATCH/UT CUT | 66       | SqFt     | М        | \$218   |
| S MYRTLE AV   | 060     | KIRK ST       | W THOM ST     | PATCH/UT CUT | 162      | SqFt     | L        | \$535   |
| W THOM ST     | 010     | S MAIN ST     | S FRANKLIN ST | PATCH/UT CUT | 30       | SqFt     | М        | \$99    |
| W THOM ST     | 010     | S MAIN ST     | S FRANKLIN ST | PATCH/UT CUT | 20       | SqFt     | L        | \$66    |
| W THOM ST     | 030     | S MYRTLE AV   | DEAD END      | DEPRESSION   | 138      | SqFt     | L        | \$455   |

\$27,784

|             |         |                        |                   |              | Sample   | Distres | S        | Sample  |
|-------------|---------|------------------------|-------------------|--------------|----------|---------|----------|---------|
|             | Section | n                      |                   | Distress     | Distress | Quanti  | tv       | Repair  |
| Branch Name | ID      | From                   | То                | Description  | Quantity | Units   | Severity | Costs*  |
| COLUMBUS ST | 010     | S US 29 HWY            | 3RD AV            | POTHOLE      | 1        | Count   | L        | \$5     |
| COLUMBUS ST | 020     | 3RD AV                 | DEAD END          | RUTTING      | 148      | SqFt    | н        | \$488   |
| COLUMBUS ST | 020     | 3RD AV                 | DEAD END          | RUTTING      | 50       | SqFt    | L        | \$165   |
| ROBERTS ST  | 020     | 3RD AV                 | DEAD END          | DEPRESSION   | 70       | SqFt    | М        | \$231   |
| 3RD AV      | 030     | ROBERTS ST             | COLUMBUS ST       | POTHOLE      | 2        | Count   | L        | \$10    |
| 3RD AV      | 030     | ROBERTS ST             | COLUMBUS ST       | PATCH/UT CUT | 17       | SqFt    | L        | \$56    |
| 3RD AV      | 040     | WALNUT ST/WALNUT ST EX | ROBERTS ST        | DEPRESSION   | 112      | SqFt    | L        | \$370   |
| 2ND AV      | 010     | S US 29 HWY            | WALNUT ST         | DEPRESSION   | 48       | SqFt    | L        | \$158   |
| 2ND AV      | 10      | S US 29 HWY            | WALNUT ST         | POTHOLE      | 1        | Count   | L        | \$5     |
| 2ND AV      | 020     | ELM ST                 | WALNUT ST         | POTHOLE      | 3        | Count   | L        | \$15    |
| 2ND AV      | 020     | ELM ST                 | WALNUT ST         | PATCH/UT CUT | 104      | SqFt    | L        | \$343   |
| 2ND AV      | 020     | ELM ST                 | WALNUT ST         | PATCH/UT CUT | 9        | SqFt    | L        | \$30    |
| 2ND AV      | 020     | ELM ST                 | WALNUT ST         | POTHOLE      | 2        | Count   | L        | \$10    |
| 2ND AV      | 020     | ELM ST                 | WALNUT ST         | RUTTING      | 400      | SqFt    | М        | \$1,320 |
| ELM ST      | 010     | CENTRAL AV             | 2ND AV            | PATCH/UT CUT | 66       | SqFt    | L        | \$218   |
| ELM ST      | 010     | CENTRAL AV             | 2ND AV            | BUMPS/SAGS   | 110      | Ft      | М        | \$363   |
| ELM ST      | 020     | 2ND AV                 | 3RD AV/BOSTIAN RD | BUMPS/SAGS   | 60       | Ft      | L        | \$198   |
| 1ST AV      | 010     | WALNUT ST              | CENTRAL AV        | PATCH/UT CUT | 336      | SqFt    | L        | \$1,109 |
| 1ST AV      | 020     | CENTRAL AV             | WALNUT ST         | RUTTING      | 180      | SqFt    | М        | \$594   |
| 1ST AV      | 020     | CENTRAL AV             | WALNUT ST         | PATCH/UT CUT | 270      | SqFt    | L        | \$891   |
| 1ST AV      | 020     | CENTRAL AV             | WALNUT ST         | BUMPS/SAGS   | 4        | Ft      | М        | \$15    |
| FRONT ST    | 010     | CENTRAL AV             | PARKING LOT       | RUTTING      | 372      | SqFt    | Н        | \$1,228 |
| FRONT ST    | 010     | CENTRAL AV             | PARKING LOT       | BUMPS/SAGS   | 15       | Ft      | М        | \$49    |
| ROSE AV     | 020     | CHERRY ST              | OAK ST            | RUTTING      | 220      | SqFt    | Н        | \$726   |
| ROSE AV     | 020     | CHERRY ST              | OAK ST            | PATCH/UT CUT | 15       | SqFt    | М        | \$50    |
| ROSE AV     | 020     | CHERRY ST              | OAK ST            | RUTTING      | 164      | SqFt    | L        | \$541   |
| ROSE AV     | 030     | OAK ST                 | WALNUT ST         | PATCH/UT CUT | 20       | SqFt    | L        | \$66    |
| ROSE AV     | 30      | OAK ST                 | WALNUT ST         | DEPRESSION   | 20       | SqFt    |          | \$66    |
| OAK ST      | 010     | E THOM ST              | ROSE AV           | BUMPS/SAGS   | 50       | Ft      | М        | \$165   |
| OAK ST      | 010     | E THOM ST              | ROSE AV           | RUTTING      | 260      | SqFt    | н        | \$858   |
| HANEY ST    | 010     | DEAD END               | LILLIAN ST        | RUTTING      | 52       | SqFt    | Н        | \$172   |
| HANEY ST    | 010     | DEAD END               | LILLIAN ST        | PATCH/UT CUT | 22       | SqFt    | М        | \$73    |
| HANEY ST    | 010     | DEAD END               | LILLIAN ST        | RUTTING      | 60       | SqFt    | Н        | \$198   |
| HANEY ST    | 010     | DEAD END               | LILLIAN ST        | PATCH/UT CUT | 40       | SqFt    | Н        | \$132   |
| HANEY ST    | 020     | LILLIAN ST             | S BOSTIAN ST      | PATCH/UT CUT | 99       | SqFt    | Н        | \$327   |

|                | Sample Distress |                              | Sample         |              |          |         |          |         |
|----------------|-----------------|------------------------------|----------------|--------------|----------|---------|----------|---------|
|                | Section         |                              |                | Distress     | Distress | Quantit | v        | Repair  |
| Branch Name    | ID              | From                         | То             | Description  | Quantity | Units   | Severity | Costs*  |
| LILLIAN ST     | 010             | E THOM ST                    | HANEY ST       | POTHOLE      | 1        | Count   | L        | \$5     |
| JOHN ST        | 010             | DEAD END                     | LILLIAN ST     | BUMPS/SAGS   | 4        | Ft      | М        | \$13    |
| JOHN ST        | 010             | DEAD END                     | LILLIAN ST     | PATCH/UT CUT | 15       | SqFt    | н        | \$50    |
| JOHN ST        | 010             | DEAD END                     | LILLIAN ST     | PATCH/UT CUT | 115      | SqFt    | М        | \$380   |
| JOHN ST        | 020             | LILLIAN ST                   | S BOSTIAN ST   | DEPRESSION   | 238      | SqFt    | L        | \$785   |
| JOHN ST        | 030             | S BOSTIAN ST                 |                | RUTTING      | 120      | SqFt    | М        | \$396   |
| S BOSTIAN ST   | 010             | E CENTERVIEW ST/N BOSTIAN ST | WOODHAVEN ST   | RUTTING      | 136      | SqFt    | М        | \$449   |
| S BOSTIAN ST   | 010             | E CENTERVIEW ST/N BOSTIAN ST | WOODHAVEN ST   | BUMPS/SAGS   | 15       | Ft      | L        | \$49    |
| S BOSTIAN ST   | 030             | CHAPEL ST                    | BLACKWELDER ST | RUTTING      | 127      | SqFt    | Н        | \$419   |
| S BOSTIAN ST   | 040             | BLACKWELDER ST               | KELLER ST      | BUMPS/SAGS   | 36       | Ft      | L        | \$119   |
| S BOSTIAN ST   | 050             | KELLER ST                    | CHINABERRY DR  | PATCH/UT CUT | 8        | SqFt    | М        | \$26    |
| S BOSTIAN ST   | 060             | CHINABERRY DR                | BENCHMARK LN   | POTHOLE      | 1        | Count   | L        | \$5     |
| S BOSTIAN ST   | 060             | CHINABERRY DR                | BENCHMARK LN   | DEPRESSION   | 18       | SqFt    | М        | \$59    |
| S BOSTIAN ST   | 070             | BENCHMARK LN                 | JOHN ST        | DEPRESSION   | 12       | SqFt    | L        | \$40    |
| S BOSTIAN ST   | 080             | JOHN ST                      | HANEY ST       | BUMPS/SAGS   | 8        | Ft      | М        | \$26    |
| BLACKWELDER ST | 010             | CUL-DE-SAC                   | S BOSTIAN ST   | RUTTING      | 125      | SqFt    | Н        | \$413   |
| BLACKWELDER ST | 010             | CUL-DE-SAC                   | S BOSTIAN ST   | DEPRESSION   | 77       | SqFt    | L        | \$254   |
| CHAPEL ST      | 010             | CUL-DE-SAC                   | S BOSTIAN ST   | PATCH/UT CUT | 2,217    | SqFt    | М        | \$7,316 |
| CHAPEL ST      | 010             | CUL-DE-SAC                   | S BOSTIAN ST   | BUMPS/SAGS   | 9        | Ft      | М        | \$30    |
| CHAPEL ST      | 010             | CUL-DE-SAC                   | S BOSTIAN ST   | PATCH/UT CUT | 238      | SqFt    | М        | \$785   |
| CHAPEL ST      | 010             | CUL-DE-SAC                   | S BOSTIAN ST   | PATCH/UT CUT | 156      | SqFt    | Н        | \$515   |
| CHAPEL ST      | 010             | CUL-DE-SAC                   | S BOSTIAN ST   | DEPRESSION   | 161      | SqFt    | М        | \$531   |
| CHAPEL ST      | 010             | CUL-DE-SAC                   | S BOSTIAN ST   | DEPRESSION   | 148      | SqFt    | М        | \$488   |
| WOODHAVEN ST   | 010             | CUL-DE-SAC                   | S BOSTIAN ST   | RUTTING      | 104      | SqFt    | М        | \$343   |
| S BOSTIAN ST   | 010             | E CENTERVIEW ST/N BOSTIAN ST | WOODHAVEN ST   | RUTTING      | 220      | SqFt    | М        | \$726   |
| N BOSTIAN ST   | 010             | E CENTERVIEW ST/S BOSTIAN ST | E KETCHIE ST   | BUMPS/SAGS   | 26       | Ft      | L        | \$86    |
| N BOSTIAN ST   | 010             | E CENTERVIEW ST/S BOSTIAN ST | E KETCHIE ST   | RUTTING      | 144      | SqFt    | L        | \$475   |
| N BOSTIAN ST   | 020             | E KETCHIE ST                 | E CHURCH ST    | PATCH/UT CUT | 24       | SqFt    | Н        | \$79    |
| N BOSTIAN ST   | 020             | E KETCHIE ST                 | E CHURCH ST    | PATCH/UT CUT | 135      | SqFt    | М        | \$446   |
| N BOSTIAN ST   | 020             | E KETCHIE ST                 | E CHURCH ST    | PATCH/UT CUT | 12       | SqFt    | Н        | \$40    |
| N BOSTIAN ST   | 020             | E KETCHIE ST                 | E CHURCH ST    | RUTTING      | 284      | SqFt    | М        | \$937   |
| N BOSTIAN ST   | 020             | E KETCHIE ST                 | E CHURCH ST    | RUTTING      | 130      | SqFt    | L        | \$429   |
| N BOSTIAN ST   | 020             | E KETCHIE ST                 | E CHURCH ST    | POTHOLE      | 2        | Count   | L        | \$10    |
| N BOSTIAN ST   | 030             | E CHURCH ST                  | E LIBERTY ST   | PATCH/UT CUT | 20       | SqFt    | Н        | \$66    |
| N BOSTIAN ST   | 030             | E CHURCH ST                  | E LIBERTY ST   | DEPRESSION   | 110      | SqFt    | Н        | \$363   |

|                 |         |                      |                         |              | Sample   | Distres | S        | Sample  |
|-----------------|---------|----------------------|-------------------------|--------------|----------|---------|----------|---------|
|                 | Section |                      |                         | Distress     | Distress | Quanti  | tv       | Repair  |
| Branch Name     | ID      | From                 | То                      | Description  | Quantity | Units   | Severity | Costs*  |
| N BOSTIAN ST    | 030     | E CHURCH ST          | E LIBERTY ST            | DEPRESSION   | 48       | SqFt    | М        | \$158   |
| E CENTERVIEW ST | 030     | BROOKWOOD CIR        | N US 29 HWY/S US 29 HWY | PATCH/UT CUT | 70       | SqFt    | L        | \$231   |
| E KETCHIE ST    | 010     | N HARRIS ST          | N BOSTIAN ST            | RUTTING      | 243      | SqFt    | н        | \$802   |
| E KETCHIE ST    | 010     | N HARRIS ST          | N BOSTIAN ST            | DEPRESSION   | 8        | SqFt    | М        | \$26    |
| E KETCHIE ST    | 020     | N BOSTIAN ST         | N US 29 HWY             | RUTTING      | 208      | SqFt    | Н        | \$686   |
| E KETCHIE ST    | 020     | N BOSTIAN ST         | N US 29 HWY             | PATCH/UT CUT | 84       | SqFt    | М        | \$277   |
| E KETCHIE ST    | 020     | N BOSTIAN ST         | N US 29 HWY             | POTHOLE      | 1        | Count   | L        | \$5     |
| E KETCHIE ST    | 020     | N BOSTIAN ST         | N US 29 HWY             | PATCH/UT CUT | 294      | SqFt    | L        | \$970   |
| E KETCHIE ST    | 020     | N BOSTIAN ST         | N US 29 HWY             | RUTTING      | 162      | SqFt    | М        | \$535   |
| E KETCHIE ST    | 020     | N BOSTIAN ST         | N US 29 HWY             | PATCH/UT CUT | 280      | SqFt    | Н        | \$924   |
| E KETCHIE ST    | 020     | N BOSTIAN ST         | N US 29 HWY             | BUMPS/SAGS   | 15       | Ft      | М        | \$49    |
| N HARRIS ST     | 020     | E KETCHIE ST         | E CHURCH ST             | PATCH/UT CUT | 145      | SqFt    | н        | \$479   |
| E LIBERTY ST    | 050     | N BOSTIAN ST         | N US 29 HWY             | PATCH/UT CUT | 50       | SqFt    | L        | \$165   |
| E LIBERTY ST    | 050     | N BOSTIAN ST         | N US 29 HWY             | RUTTING      | 79       | SqFt    | М        | \$261   |
| POWER ST        | 010     | E LIBERTY ST         | GROVE ST                | RUTTING      | 250      | SqFt    | L        | \$825   |
| GROVE ST        | 010     | POWER ST             | HEGLAR ST               | PATCH/UT CUT | 40       | SqFt    | М        | \$132   |
| BARE ST         | 010     | N US 29 HWY          | DEAD END                | POTHOLE      | 2        | Count   | L        | \$10    |
| RAILROAD AV     | 010     | E LIBERTY ST         | RIDGE ST                | PATCH/UT CUT | 70       | SqFt    | L        | \$231   |
| RAILROAD AV     | 010     | E LIBERTY ST         | RIDGE ST                | PATCH/UT CUT | 36       | SqFt    | М        | \$119   |
| RIDGE ST        | 010     | RAILROAD AV          | DEAD END                | PATCH/UT CUT | 130      | SqFt    | L        | \$429   |
| RIDGE ST        | 010     | RAILROAD AV          | DEAD END                | DEPRESSION   | 4        | SqFt    | L        | \$13    |
| E VANCE ST      | 010     | N MAIN ST/W VANCE ST | SALISBURY ST            | PATCH/UT CUT | 370      | SqFt    | L        | \$1,221 |
| SALISBURY ST    | 010     | E CHURCH ST          | E VANCE ST              | RUTTING      | 132      | SqFt    | L        | \$436   |
| SALISBURY ST    | 020     | E VANCE ST           | E LIBERTY ST            | PATCH/UT CUT | 884      | SqFt    | L        | \$2,917 |
| SALISBURY ST    | 020     | E VANCE ST           | E LIBERTY ST            | POTHOLE      | 3        | Count   | L        | \$15    |
| WASHINGTON ST   | 020     | KLONDALE ST          | DEAD END                | POTHOLE      | 1        | Count   | L        | \$5     |
| WASHINGTON ST   | 020     | KLONDALE ST          | DEAD END                | POTHOLE      | 6        | Count   | М        | \$30    |
| WASHINGTON ST   | 020     | KLONDALE ST          | DEAD END                | DEPRESSION   | 56       | SqFt    | Н        | \$185   |
| KLONDALE ST     | 020     | KNIGHT ST            | WASHINGTON ST           | PATCH/UT CUT | 28       | SqFt    | L        | \$92    |
| KLONDALE ST     | 030     | WASHINGTON ST        | OLD ROCKWELL RD         | PATCH/UT CUT | 32       | SqFt    | L        | \$106   |
| KLONDALE ST     | 030     | WASHINGTON ST        | OLD ROCKWELL RD         | RUTTING      | 36       | SqFt    | L        | \$119   |
| KLONDALE ST     | 030     | WASHINGTON ST        | OLD ROCKWELL RD         | PATCH/UT CUT | 44       | SqFt    | н        | \$145   |
| OLD ROCKWELL RD | 010     | N MAIN ST            | KLONDALE ST             | PATCH/UT CUT | 13       | SqFt    | М        | \$43    |
| OLD ROCKWELL RD | 010     | N MAIN ST            | KLONDALE ST             | PATCH/UT CUT | 20       | SqFt    | L        | \$66    |
| OLD ROCKWELL RD | 010     | N MAIN ST            | KLONDALE ST             | RUTTING      | 73       | SqFt    | Н        | \$241   |

| Town | of China | Grove | - 2024 Pa | avement N | <i>A</i> ana g | gement Plan |
|------|----------|-------|-----------|-----------|----------------|-------------|
|------|----------|-------|-----------|-----------|----------------|-------------|

# 2024-2025 ASPHALT LEVELING AND POTHOLE REPAIR NETWORK LEVEL LIST

|                 |         |             |          |             | Sample   | Distre | SS       | Sample |
|-----------------|---------|-------------|----------|-------------|----------|--------|----------|--------|
|                 | Section | ñ           |          | Distress    | Distress | Quant  | itv      | Repair |
| Branch Name     | ID      | From        | То       | Description | Quantity | Units  | Severity | Costs* |
| OLD ROCKWELL RD | 020     | KLONDALE ST | DEAD END | RUTTING     | 138      | SqFt   | L        | \$455  |

\$41,801

| *NOTE: THIS \$ AMOUNT IS FOR                    |         | \$69,584  |
|-------------------------------------------------|---------|-----------|
| SAMPLE AREA ONLY - ACTUAL COST                  | то      | \$175,000 |
| FOR ENTIRE SECTION AREA WILL LIKELY             |         |           |
| BE HIGHER - NEED TO FIELD VERIFY                |         |           |
| ENTIRE SECTION                                  |         |           |
|                                                 |         |           |
| <b>*NOTE: THIS IS A HIGH LEVEL NETWORK SURV</b> | EY. FO  | R         |
| <b>PROJECT LEVEL NEED TO CHECK COMPLETE S</b>   | TREET   |           |
| SECTIONS ABOVE AND RIDE OTHER STREETS N         | IOT LIS | TED TO    |
|                                                 |         |           |

DEVELOP A COMPREHENSIVE LIST OF REPAIRS

47

# 2026-2030 Resurfacing List

#### 2026-2030 RESURFACING LIST\*

|                  | From                      | То                           | <b>Network Level</b>     | Consultant<br>Recommended |             |
|------------------|---------------------------|------------------------------|--------------------------|---------------------------|-------------|
|                  |                           |                              | Estimated                |                           |             |
| Street Name      |                           |                              | <b>Resurfacing Cost*</b> | Resurf                    | acing year  |
| SPRING BRANCH LN | MITCHELL AVE              | W HILLSIDE DR                | 9                        | 1                         | yr 2026     |
| W HILLSIDE DR    | SPRING BRANCH LN          | ARBOR DR                     |                          | 1                         |             |
| W HILLSIDE DR    | ARBOR DR                  | HICKORY GROVE LN             |                          | 1                         |             |
| ARBOR DR         | W HILLSIDE DR             | SHUE RD                      |                          | 1                         |             |
|                  |                           |                              |                          |                           |             |
|                  |                           |                              | \$125,000                | 0.553                     | miles       |
|                  |                           |                              |                          |                           |             |
|                  |                           |                              |                          | Hold yr 2027              |             |
|                  |                           |                              |                          | to build funding          |             |
|                  |                           |                              |                          |                           |             |
| LOUISE AV        | S MYRTLE AVE              | S CLINTON                    |                          | 3                         | yr 2028     |
| N MYRTLE AVE     | PARK ST                   | W KETCHIE ST                 |                          | 3                         |             |
| W CENTERVIEW ST  | E CENTERVIEW ST/N MAIN ST | N FRANKLIN ST/ S FRANKLIN ST |                          | 3                         |             |
| W VANCE ST       | E VANCE ST/N MAIN ST      | MILLER ST                    |                          | 3                         |             |
| W VANCE ST       | MILLER ST                 | MITCHELL AV                  |                          | 3                         |             |
|                  |                           |                              |                          |                           |             |
|                  |                           |                              | \$171,000.00             | 0.615                     | miles       |
|                  |                           |                              |                          |                           |             |
| LAUREL ST        | WILSON ST                 | HICKORY NUT LN               |                          | 4                         | yr 2029     |
| OAKWOOD CT       | CUL-DE-SAC                | MITCHELL AVE                 |                          | 4                         |             |
| COVE LN          | MITCHELL AVE              | CUL-DE-SAC                   |                          | 4                         |             |
| LAUREL ST        | HICKORY NUT LN            | MITCHELL AVE                 |                          | 4                         |             |
|                  |                           |                              |                          |                           |             |
|                  |                           |                              | \$111,000.00             | 0.563                     | miles       |
|                  |                           |                              |                          |                           |             |
|                  |                           |                              |                          |                           |             |
|                  |                           |                              |                          |                           |             |
| MITCHELL AV      | W STOKES ST               |                              |                          | 5                         | yr 2030     |
| MITCHELL AV      | OAKWOOD CT                | COVE LN                      |                          | 5                         |             |
| MITCHELL AV      | COVE LN                   | SPRING BRANCH LN             |                          | 5                         |             |
| MITCHELL AV      | WILSON ST                 | LAUREL ST                    |                          | 5                         |             |
| MITCHELL AV      | SPRING BRANCH LN          | WILSON ST                    |                          | 5                         |             |
|                  |                           |                              |                          |                           |             |
| 8                |                           |                              | \$89,000.00              | 0.463                     | miles       |
|                  | 1                         |                              | \$406.000.00             | 2.10                      | miles tetal |
|                  |                           |                              | \$490,000.00             | 2.19                      | miles total |

\*NETWORK LEVEL - HIGH LEVEL COST ESTIMATES NEED TO BE REEVALUATED FOR CONTRACT BID LEVEL