The table above indicates 'contaminants' that were detected (No Total Coliform/Ecoli Detections) in Cleveland's water supply and are required to be reported. Not indicated are additional 'contaminants' for which tests were conducted and not detected. "Contaminant" means any physical, chemical, biological, or radiological substance or matter in water including chemicals used during treatment.

⊕ = 100% of CFP samples were ≤ 0.3 NTU. 99.9% of WAT samples were < 0.3 NTU. 100% of HUC samples were ≤ 0.3 NTU. 100% of EUD samples were ≤ 0.3 NTU. 100% of EUD samples were ≤ 0.3 NTU. 99.5% of SVUD samples were below the turbidity limit. Turbidity is a measure of the cloudiness of the water. It is a good indicator of the effectiveness of the filtration system.
</p>

② = Average is the maximum quarterly value from locational running annual averages. Compliance with the MCL is based on the locational running annual average. Rang is the minimum to maximum for individual samples from all locations and are not averages.

🕲 = Analysis must be performed again prior to the end of 2020 (3 yr cycle). 100% of the homes tested for Lead and Copper in the CU system were below the Action Level

= Plants have met the TT requirements for TOC in 2019. This value is based on a quarterly running annual average and is the highest of those averages.

*MCL Definition for E.Coli: Routine and repeat samples are total coliform-positive and either is E. coli-positive or system fails to take repeat samples following E. coli-positive routine sample or system fails to analyze total coliform-positive repeat sample for E. coli.

** = Some people who drink water containing trihalomethanes in excess of the MCL over many years could experience problems with their liver, kidneys, or central nervous systems, and may have an increased risk of getting cancer.

MCL (Maximum Contaminant Level) = The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology

MCLG (Maximum Contaminant Level Goal) = The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level) = The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of disinfectant is necessary for the control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal) = The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

TT (Treatment Technique) = A required process intended to reduce the level of a contaminant in drinking water

AL (Action Level) = The concentration of a contaminant which, when exceeded, triggers a treatment or other requirement which a water system must follow.

ppm = part per million, ppb = part per billion, NTU = Nephelometric Turbidity Units (Measure of Water Clarity), MPN = Most Probable Number, pCi/l = picocuries per liter ND = Not Detected, NR = Not Required, NA = Not Applicable

CU = Cleveland Utilities (Distribution System)
WAT = Waterville Springs (Ground Water)

HUC = Hiwassee Utilities Commission (Surface Water

EUD = Eastside Utility District (Surface Water)

CFP = Cleveland Filtration Plant (Surface Water)

2020 CU HOLIDAYS

Our offices will be closed for the following holidays. Our call Center is open 24/7.

Memorial Day - May 25
Independence Day - July 3
Lahor Day - September 7

Our new Water Loss
Program has
launched. Feel free to
contact us if you have
any questions at
423-472-4521

Holidays,
Emergencies or
After Hours,
Call our Call Center
24/7 @
423-472-4521

CLEVELAND UTILITIES' CUSTOMER CONNECTIONS

Owned and published by Cleveland Utilities, a public utility serving over 31,000 customers.

Tim O. Henderson, President/CEO Maribel Ware, Newsletter Editor

Customer Connections is published semi-annually
Address changes, news items and suggestions
should be sent to
P.O.Box 2730

Visit our website at www.clevelandutilities.com

SPRING 2020 ISSUE

VOL. 84 IN-181256

CUSTOMER CONNECTIONS

Official Newsletter for Cleveland Utilities' Customers

A MESSAGE FROM CLEVELAND UTILITIES PRESIDENT/CEO

Tim O. Henderson

As I am writing this article, we are in the midst of the Coronavirus (COVID-19) Pandemic. No matter where you are, the evidence is everywhere. COVID-19 has permeated our daily life in every way imaginable. Schools have been temporarily closed, major industries have canceled events, restaurants and retail businesses have altered their normal business operations, the economy has been impacted, and there is an immense amount of anxiety and concern about how this situation will play out. This has been a stressful time for all of us. As an essential service provider to the community, we implemented measures to protect the health and well-being of our employees and customers. The safety of everyone has always been and remains a top priority. This situation has resulted in temporary modifications to our normal business operations as many of you have seen.

In an effort to minimize the spread of COVID-19, we temporarily closed our lobby to walk-in services. We have extended the drivethru hours from 7 AM to 7 PM, Monday through Friday, in an effort to better serve you during this time. Staffing has been rearranged to better accommodate the influx of online and telephone request. In addition, we suspended the disconnection of services for nonpay for a period to help those who are experiencing hardships as a result of all these challenges presented by COVID-19. We are also working with you, our customers, allowing flexibility in our payment options. Call us for assistance; we are right here! In closing, we are continually monitoring the situation. It is fluid, changing daily and may require us to take additional actions as these changes occur. Rest assured, we are still here to serve your utility needs. We appreciate your patience and understanding as we work through this unprecedented time together. It's tough, but we'll get through this together as a community. Blessings!

CONTENTS

A Message from the CEO

01

2019 Water Quality Report

02

2019 Water Quality
Data

03

2019 Water Quality Data

Cleveland O 6 Utilities

Cleveland Utilities WATER QUALITY REPORT - 2019

Water Sources and Protection

Sources of Cleveland's drinking water include surface water from the Hiwassee and Tennessee Rivers, and ground water from limestone aquifers in the area (Waterville Spring). Cleveland Utilities also purchases water from other area utilities to ensure an adequate water supply to the service areas of Cleveland and Bradley County. These utilities include the Hiwassee Utilities Commission and Eastside Utility District.

Our goal is to protect our water from contaminants and we are working with the State to determine the vulnerability of our water sources to potential contamination. The Tennessee Department of Environment and Conservation (TDEC) and Cleveland Utilities have prepared a Source Water Assessment Program (SWAP) Report including a Wellhead Protection Plan for susceptibility of untreated water sources to potential contamination. To insure safe drinking water, all public water systems treat and routinely test their water. CU sources have been rated as reasonably susceptible based on geologic factors and human activities in the vicinity of the water source. An explanation of Tennessee's source Water Assessment Program, the Source Water Assessment summaries, susceptibility scorings and overall TDEC report to EPA can be viewed online at https://www.tn.gov/environment/program-areas/wr-water-

<u>resources/water-quality/source-water-assessment.html</u> or contact Cleveland Utilities at 423-559-5277 or 423-478-0698, Monday – Friday between 8:00 a.m. and 4:00 p.m.

Water Operations and Testing

Cleveland Utilities operates 3 water treatment plants which are staffed with state licensed operators. The operations staff is responsible for overseeing the treatment operation and performing quality control checks over all of the water produced by these plants. The Environmental and Regulatory Compliance Department is responsible for ensuring that the quality and protection of the drinking water is maintained and is compliant with stringent State and Federal regulations.

Contaminant Information

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline at (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water:

-Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems,

agricultural livestock operations, and wildlife.

- -Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming.
- -Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- -Organic chemical contaminants, including synthetic and volatile

organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems.

-Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA and the Tennessee Department of Environment and Conservation prescribe regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Special Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 800-426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Cleveland Utilities is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Cryptosporidium

Cryptosporidium is a microscopic parasite which is found in surface water throughout the U.S. and comes from animal waste and run-off. When ingested, it can result in diarrhea, fever and other gastrointestinal symptoms. Cryptosporidium is eliminated by an effective treatment combination including coagulation, sedimentation, filtration, and disinfection. For more information on Cryptosporidium, contact the Safe Drinking Water Hotline (800-426-4791).

The Environmental Protection Agency (EPA) requires water systems to give consumers an annual report on the quality of their drinking water. CU provides consumers current water quality information by calling 423-559-8788 or 423-478-0698 between the hours of 8:00 a.m. and 4:00 p.m. Monday – Friday or on our web site at www.clevelandutilities.com.

Este informe contiene información muy importante. Tradúscalo o hable con alguien que lo entienda bien.

The Board of Public Utilities of the City of Cleveland generally meets on the fourth Friday of each month at 12:30 p.m. at Cleveland Utilities in the Tom Wheeler Training Center, 2455 Guthrie Avenue, NW, Cleveland, Tennessee.

2019 WATER QUALITY DATA

Cleveland O

REGULATED AT THE	I		evel Detec		INVIER		I Detected			
Contaminant (unit)	Analyzed	Violation	CFP	WAT	HUC	Analyzed	EUD	MCL	MCLG	Source of Contaminant
\$60.00	2019	Yes/No	0.28	41 (46-00)0000 (49-00)	0.15	2019	0.30	TT	NA	Soil runoff.
Turbidity (ntu) ①		No	SCARDIG.	0.02 - 0.52	0.01 - 0.15	5230,354,0864	0.02 - 0.30			
Nitrate (ppm)	2019	No	0.238	0.944	0.254	2019	0.489	10	10	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Total Organic Carbon	2019 Range	No	0.68 ④	NR	0.68 ④	2019	0.91 ④	TT	TT	Naturally present in the environment.
(TOC) (ppm)			0.58 - 0.79	NR	0.54 - 0.84		0.79 - 1.07			
Combined Radium (pCi/l)	2014	No	< 2.41	ND	< 1.08	Not	Reported	5	0	Erosion of natural deposits.
Alpha Emitters (pCi/l)	2014	No	1.3	2.1	ND	Not	Reported	15	0	Erosion of natural deposits.
Sodium (ppm)	2019	No	2.41	2.17 (2017)	2.35	2019	4.36	AN	NA	Erosion natural deposits; Used in water treatment.
REGULATED IN THE D	ISTRIBUT	TION SYS	TEM AND	сиѕтоме	R TAP					
Contaminant (unit)	Level Detected					Level Detected				
	Analyzed	Violation		CU	HUC	Analyzed	EUD	MCL	MCLG	Source of Contaminant
Total Trihalomethane** (TTHM) (ppb)	2019 ②	Yes/No No	Average	55.8	40.4	2019	28.7	80	NA	By-product of drinking water chlorination.
			Range	2.1 - 85.6	35.3 - 40.4	Range	16.1 - 39.8			
Haloacetic Acids	2019	No	Average	45.2	31.9	2019	20.5	NA	By-product of drinking water chlorination.	
(HAA5) (ppb)	2	120.0000	Range	1.0 - 49.2	23.7 - 31.9	Range	9.58 - 25.7	4040	2.555	
Total Coliform (mpn/100ml)	2019	No	Daily	0	(Weekly) 0	Daily 2019	0	TT	NA	Naturally present in the environment
E.Coli (mpn/100ml)		No		0	0		0	*See Definition	0	Human and animal fecal waste
Lead (ppb)	2017 ③	No	90 th percentile	< 1.0	NR	2017	90th % = 1.88	AL = 15	0	Corrosion of household plumbing systems; Erosion of natural deposits.
	9		Range	< 1.0 - 2.7		1000 1000 1000 1000 1000 1000 1000 100	< 1.0 - 5.36			laturar deposits.
Copper (ppm)	2017 ③	No	90 th percentile	0.096	NR	2017	90th % = 0.161	AL = 1.3	1.3	Corrosion of household plumbing systems; Erosion of natural deposits; Leaching from wood preservatives.
Chlorine (ppm)	2019	No	Range Maximum	2.4	2.1	Range 2019 Avg. Range	0.0061 - 0.282 1.63	MRDL 4.0	MRDLG 4.0	Water additive used to control microbes.
			Level Range	0.2 - 2.4	1.6 - 2.1		0.80 - 2.17			
The self of August	2019	No	Average	0.65	0.67	2019	0.73	4.0	4.0	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and
Fluoride (ppm)	2	INO	Range	0.60 - 0.68	0.06 - 0.85	Range	0.57 - 0.89	4.0	4.0	aluminum factories.
REGULATED AT THE D	DISTRIBU	TION SY	STEM ENT	RY POINT	(WATER T	REATME	ENT FACILITY) AND CU	STOMERT	AP
Contaminant (unit)	Level Detected				Leve	I Detected	MCL	MCLG	Source of Contaminant	
Total Chromium (ppb)		Yes/No Maximum	CU	WAT	Analyzed	EUD	**************************************	96/2016 2012/2010	to a second of the control of the Co	
				0.247	0.218	2015 Range	1.3 0.278 - 1.3	100	100	Discharge from steel and pulp mills; Erosion of natural deposits.
UNREGULATED AT TH	IE DISTRI	BUTION								
	Level Detected					JSTOME				
Contaminant (unit)		ı		12 12	NT AND C			Ur	regulated	Contaminant Monitoring Rule (UCMR)
	Analyzed	l		12 12	NT AND C		R TAP	Ur	regulated	Contaminant Monitoring Rule (UCMR)
				ted		Leve Analyzed	R TAP	Ur	nregulated	Contaminant Monitoring Rule (UCMR)
Strontium (ppb)	Analyzed 2015	Av	_evel Detec	cted CU	WAT	Leve	I Detected	Ur	nregulated	Contaminant Monitoring Rule (UCMR)
Strontium (ppb)	2015	Av Ra	_evel Detec	CU 29.7	WAT 26.2	Leve Analyzed 2015	I Detected E U D 68.4	Ur	nregulated	Contaminant Monitoring Rule (UCMR)
		Av Ra Av	evel Detec	CU 29.7 23 - 42.3	WAT 26.2 22.4 - 35.1	Leve Analyzed	E U D 68.4 22 - 77.3	Ur	nregulated	Contaminant Monitoring Rule (UCMR)
Strontium (ppb) Vanadium (ppb)	2015	Av Ra Av	erage erage erage	29.7 23 - 42.3 0.273	WAT 26.2 22.4 - 35.1 0.346	Leve Analyzed 2015	ER TAP I Detected E U D 68.4 22 - 77.3 0.221	Ur	nregulated	Contaminant Monitoring Rule (UCMR)
Strontium (ppb)	2015	Av Ra Av Ra	erage erage erage erage	29.7 23 - 42.3 0.273 <0.2 - 0.39	WAT 26.2 22.4 - 35.1 0.346 <0.2 - 0.42	Leve Analyzed 2015	ER TAP I Detected E U D 68.4 22 - 77.3 0.221 <0.2 - 0.31	700		
Strontium (ppb) Vanadium (ppb) Hexavalent Chromium (ppb)	2015 2015 2015	Av Ra Av Ra Av	erage erage erage erage erage erage	29.7 23 - 42.3 0.273 <0.2 - 0.39 0.164	WAT 26.2 22.4 - 35.1 0.346 <0.2 - 0.42 0.218 0.05 - 0.26	Leve Analyzed 2015 2015 2015	ER TAP I Detected E U D 68.4 22 - 77.3 0.221 <0.2 - 0.31 0.076	Unre establis	gulated co hed drinkin	ntaminants are those for which EPA has not g water standards. The purpose of unregulated
Strontium (ppb) Vanadium (ppb) Hexavalent Chromium	2015	Av Ra Av Ra Av	erage erage erage erage erage erage erage erage	29.7 23 - 42.3 0.273 <0.2 - 0.39 0.164 0.08 - 0.25	WAT 26.2 22.4 - 35.1 0.346 <0.2 - 0.42 0.218	Leve Analyzed 2015	ER TAP I Detected E U D 68.4 22 - 77.3 0.221 <0.2 - 0.31 0.076 0.035 - 0.15	Unre establis contamina of unre	gulated co hed drinkin int monitori gulated cor	ntaminants are those for which EPA has not g water standards. The purpose of unregulated ng is to assist EPA in determining the occurrenc taminants in drinking water and whether future
Strontium (ppb) Vanadium (ppb) Hexavalent Chromium (ppb)	2015 2015 2015	Av Ra Av Ra Av Ra Av	erage	29.7 23 - 42.3 0.273 <0.2 - 0.39 0.164 0.08 - 0.25 21.6	WAT 26.2 22.4 - 35.1 0.346 <0.2 - 0.42 0.218 0.05 - 0.26	Leve Analyzed 2015 2015 2015	ER TAP I Detected E U D 68.4 22 - 77.3 0.221 <0.2 - 0.31 0.076 0.035 - 0.15 146.8 <20 - 190.4 0.089	Unre establis contamina of unre regulation establishe	gulated co hed drinkin int monitori gustamente d based on d based on	ntaminants are those for which EPA has not g water standards. The purpose of unregulated ng is to assist EPA in determining the occurrenc taminants in drinking water and whether future d. UCMR minimum reporting levels (MRLs) wer the capability of the analytical method, not base
Strontium (ppb) Vanadium (ppb) Hexavalent Chromium (ppb) Chlorate (ppb)	2015 2015 2015 2015	Av Ra Av Ra Av Ra Av Ra	erage	29.7 23 - 42.3 0.273 <0.2 - 0.39 0.164 0.08 - 0.25 21.6 <20 - 32.9	WAT 26.2 22.4 - 35.1 0.346 <0.2 - 0.42 0.218 0.05 - 0.26 ND	Leve Analyzed 2015 2015 2015 2015 2015	ER TAP I Detected E U D 68.4 22 - 77.3 0.221 <0.2 - 0.31 0.076 0.035 - 0.15 146.8 <20 - 190.4 0.089 <0.07 - 0.103	Unre establis contamina of unre regulation establishe on a leve MRLs are	gulated co hed drinkin julated cor is warrante d based on I establishe coften belo	ntaminants are those for which EPA has not gwater standards. The purpose of unregulated ng is to assist EPA in determining the occurrenc taminants in drinking water and whether future id. UCMR minimum reporting levels (MRLs) wer the capability of the analytical method, not base d as "significant" or "harmful." In fact, the UCMR w current "health reference levels" (to the extent
Strontium (ppb) Vanadium (ppb) Hexavalent Chromium (ppb) Chlorate (ppb)	2015 2015 2015 2015 2015 2015	Av Ra Av Ra Av Ra Av Ra	erage	29.7 23 - 42.3 0.273 <0.2 - 0.39 0.164 0.08 - 0.25 21.6 <20 - 32.9 ND	WAT 26.2 22.4 - 35.1 0.346 <0.2 - 0.42 0.218 0.05 - 0.26 ND	Leve Analyzed 2015 2015 2015 2015 2015 Leve	ET TAP I Detected E U D 68.4 22 - 77.3 0.221 <0.2 - 0.31 0.076 0.035 - 0.15 146.8 <20 - 190.4 0.089 <0.07 - 0.103 I Detected	Unre establis contamina of unre regulation establishe on a leve MRLs are	gulated co hed drinkin nt monitori gulated cor is warrante d based on l establishe e often belo s have bee	ntaminants are those for which EPA has not gwater standards. The purpose of unregulated ng is to assist EPA in determining the occurrenc taminants in drinking water and whether future id. UCMR minimum reporting levels (MRLs) wer the capability of the analytical method, not base d as "significant" or "harmful." In fact, the UCMR w current "health reference levels" (to the extent
Strontium (ppb) Vanadium (ppb) Hexavalent Chromium (ppb) Chlorate (ppb) 1,4 - Dioxane (ppb)	2015 2015 2015 2015	Avv Ra Av Ra Av Ra Av Ra Av Ra Av Ra	erage	29.7 23 - 42.3 0.273 <0.2 - 0.39 0.164 0.08 - 0.25 21.6 <20 - 32.9 ND sted WAT	WAT 26.2 22.4 - 35.1 0.346 <0.2 - 0.42 0.218 0.05 - 0.26 ND ND	Leve Analyzed 2015 2015 2015 2015 2015	ER TAP I Detected E U D 68.4 22 - 77.3 0.221 <0.2 - 0.31 0.076 0.035 - 0.15 146.8 <20 - 190.4 0.089 <0.07 - 0.103 I Detected E U D	Unre establis contamina of unre regulation establishe on a leve MRLs are	gulated co hed drinkin nt monitori gulated cor is warrante d based on l establishe e often belo s have bee	ntaminants are those for which EPA has not g water standards. The purpose of unregulated ng is to assist EPA in determining the occurrenc taminants in drinking water and whether future d. UCMR minimum reporting levels (MRLs) wer the capability of the analytical method, not base d as "significant" or "harmful." In fact, the UCMR w current "health reference levels" (to the extend n established).For additional information call the
Strontium (ppb) Vanadium (ppb) Hexavalent Chromium (ppb) Chlorate (ppb) 1,4 - Dioxane (ppb)	2015 2015 2015 2015 2015 2015	Av Ra	erage crage erage erage erage erage onge erage erage onge	29.7 23.42.3 0.273 <0.2 - 0.39 0.164 0.08 - 0.25 21.6 <20 - 32.9 ND ted WAT ND	WAT 26 2 22.4 - 35.1 0.346 <0.2 - 0.42 0.218 0.05 - 0.26 ND ND HUC 5.5	Leve Analyzed 2015 2015 2015 2015 2015 Leve	ET TAP I Detected E U D 68.4 22 - 77.3 0.221 <0.2 - 0.31 0.076 0.035 - 0.15 146.8 <20 - 190.4 0.089 <0.07 - 0.103 I Detected	Unre establis contamina of unre regulation establishe on a leve MRLs are	gulated co hed drinkin nt monitori gulated cor is warrante d based on l establishe e often belo s have bee	ntaminants are those for which EPA has not g water standards. The purpose of unregulated ng is to assist EPA in determining the occurrenc taminants in drinking water and whether future d. UCMR minimum reporting levels (MRLs) wer the capability of the analytical method, not base d as "significant" or "harmful." In fact, the UCMR we current "health reference levels" (to the exten n established). For additional information call the
Strontium (ppb) Vanadium (ppb) Hexavalent Chromium (ppb) Chlorate (ppb) 1,4 - Dioxane (ppb) Contaminant (unit) Manganese (ppb)	2015 2015 2015 2015 2015 2015 2015 2018	Avv Ra Av Ra Av Ra Av Ra Av Ra Av Ra	erage	29.7 23 - 42.3 0.273 <0.2 - 0.39 0.164 0.08 - 0.25 21.6 <20 - 32.9 ND sted WAT	WAT 26.2 22.4 - 35.1 0.346 <0.2 - 0.42 0.218 0.05 - 0.26 ND ND	2015 2015 2015 2015 2015 2015 2015 2015	ER TAP I Detected E U D 68.4 22 - 77.3 0.221 <0.2 - 0.31 0.076 0.035 - 0.15 146.8 <20 - 190.4 0.089 <0.07 - 0.103 I Detected E U D 3.5 2.24 - 4.57	Unre establis contamina of unre regulation establishe on a leve MRLs are	gulated co hed drinkin nt monitori gulated cor is warrante d based on l establishe e often belo s have bee	ntaminants are those for which EPA has not g water standards. The purpose of unregulated ng is to assist EPA in determining the occurrenc taminants in drinking water and whether future d. UCMR minimum reporting levels (MRLs) wer the capability of the analytical method, not base d as "significant" or "harmful." In fact, the UCMR w current "health reference levels" (to the extend n established).For additional information call the
Strontium (ppb) Vanadium (ppb) Hexavalent Chromium (ppb) Chlorate (ppb) 1,4 - Dioxane (ppb) Contaminant (unit)	2015 2015 2015 2015 2015 Analyzed	Av Ra	erage crage erage erage erage erage onge erage erage onge	29.7 23 - 42.3 0.273 <0.2 - 0.39 0.164 0.08 - 0.25 21.6 <20 - 32.9 ND cted WAT ND	WAT 26 2 22.4 - 35.1 0.346 <0.2 - 0.42 0.218 0.05 - 0.26 ND ND HUC 5.5	2015 2015 2015 2015 2015 2015 2015 2015	ER TAP I Detected E U D 68.4 22 - 77.3 0.221 <0.2 - 0.31 0.076 0.035 - 0.15 146.8 <20 - 190.4 0.089 <0.07 - 0.103 I Detected E U D 3.5	Unre establis contamina of unre regulation establishe on a leve MRLs are	gulated co hed drinkin nt monitori gulated cor is warrante d based on l establishe e often belo s have bee	ntaminants are those for which EPA has not g water standards. The purpose of unregulated ng is to assist EPA in determining the occurrence taminants in drinking water and whether future d. UCMR minimum reporting levels (MRLs) wer the capability of the analytical method, not base d as "significant" or "harmful." In fact, the UCMR we current "health reference levels" (to the extent n established). For additional information call the
Strontium (ppb) Vanadium (ppb) Hexavalent Chromium (ppb) Chlorate (ppb) 1,4 - Dioxane (ppb) Contaminant (unit) Manganese (ppb) Haloacetic Acids	2015 2015 2015 2015 2015 2015 2015 2018	Av Ra	erage crage erage erage erage erage onge erage erage onge	29.7 23 - 42.3 0.273 <0.2 - 0.39 0.164 0.08 - 0.25 21.6 <20 - 32.9 ND sted WAT ND 3.31	WAT 26 2 22.4 - 35.1 0.346 <0.2 - 0.42 0.218 0.05 - 0.26 ND ND HUC 5.5	2015 2015 2015 2015 2015 2015 2015 2018 2018 Not	ER TAP I Detected E U D 68.4 22 - 77.3 0.221 <0.2 - 0.31 0.076 0.035 - 0.15 146.8 <20 - 190.4 0.089 <0.07 - 0.103 I Detected E U D 3.5 2.24 - 4.57	Unre establis contamina of unre regulation establishe on a leve MRLs are	gulated co hed drinkin nt monitori gulated cor is warrante d based on l establishe e often belo s have bee	ntaminants are those for which EPA has not g water standards. The purpose of unregulated ng is to assist EPA in determining the occurrenc taminants in drinking water and whether future d. UCMR minimum reporting levels (MRLs) wer the capability of the analytical method, not base d as "significant" or "harmful." In fact, the UCMR w current "health reference levels" (to the extend n established).For additional information call the