

MIII AMENDMENI APPLICATIO Part III Attachment 7

CLOSURE PLAN

Edinburg Regional Disposal Facility
Edinburg, Hidalgo County, Texas
TCEQ Permit MSW-956C

Submitted To: City of Edinburg

Department of Solid Waste Management

8601 North Jasman Road Edinburg, Texas 78542 USA

Submitted By: Golder Associates Inc.

500 Century Plaza Drive, Suite 190

Houston, TX 77073 USA

GOLDER ASSOCIATES INC. Professional Engineering Firm Registration Number F-2578

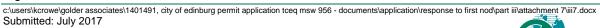
INTENDED FOR PERMITTING PURPOSES ONLY

July 2017

Revised: November 2017

Project No. 1401491

Table of Contents


EXECUTIVE SUMMARY	ES-1
1.0 FINAL COVER DESIGN	1
1.1 Final Contour Map	1
1.2 Final Cover System	1
1.2.1 Conventional Composite System	1
1.2.2 Alternative Composite System	2
1.2.3 Alternative Synthetic Grass System	2
2.0 CLOSURE	3
2.1 Maximum Closure Area	3
2.2 Maximum Inventory of Wastes	3
2.2.1 Facility Units	3
2.2.2 Storage or Processing Units	4
2.3 Unit Closure Implementation	4
2.3.1 Closure Plan Placed in Operating Record by In	itial Receipt of Waste4
2.3.2 Closure Notice to TCEQ	4
2.3.3 Begin Closure Activities	5
2.3.4 Complete Closure Activities	5
2.3.5 Following Completion of Closure Activities	5
2.3.6 TCEQ Closure Acknowledgement	6
2.4 Final Facility Closure	6
2.4.1 Public Notice	FOR THE STATE OF T
2.4.2 Written Notification to TCEQ	
2.4.3 Facility Closure Sign Posting	ILLEDEN D. FACCETT
2.4.4 Access Barriers	7 85675 ·4
2.4.5 Deed Recordation	7
2.4.6 Certification	7
3.0 FINAL COVER QUALITY CONTROL PLAN	

List of Figures

Figure III7-1 Final Contour Map Fill Cross-Section Location Map Figure III7-2A Figure III7-2B Fill Cross-Section A Figure III7-2C Fill Cross-Section B Figure III7-2D Fill Cross-Section C Figure III7-2E Fill Cross-Section D Figure III7-3A Conventional Composite Final Cover Details Figure III7-3B Alternative Composite Final Cover Details Figure III7-3C Alternative Synthetic Grass Final Cover Details Figure III7-4 Maximum Closure Area

GOLDER ASSOCIATES INC. Professional Engineering Firm Registration Number F-2578

INTENDED FOR PERMITTING PURPOSES ONLY

List of Appendices

Appendix III7A Alternative Composite Final Cover Demonstration
Appendix III7B Alternative Synthetic Grass Final Cover Demonstration

Appendix III7C TCEQ Closure Plan Form

Appendix III7D Final Cover Quality Control Plans

III7D-1 Conventional Composite and Alternative Composite Final Cover Systems

III7D-2 Alternative Synthetic Grass Final Cover System

GOLDER ASSOCIATES INC. Professional Engineering Firm Registration Number F-2578

INTENDED FOR PERMITTING PURPOSES ONLY

Golder ssociates

Revised: November 2017

EXECUTIVE SUMMARY

30 TAC §330.457(e)(1)

This Closure Plan has been developed to addresses the requirements of Title 30 of the Texas Administrative Code (TAC) §§330.63(h) and 330.457 (Subchapter K), Closure Requirements for Municipal Solid Waste Landfill Units that Receive Waste on or after October 9, 1993. This plan includes a description of the final cover systems, a description of the steps that will be undertaken to close each filled disposal area, and the methods used to install the final cover.

1.0 FINAL COVER DESIGN

1.1 **Final Contour Map**

30 TAC §§330.63(h) & 330.457(e)(5)

A contour map showing the final constructed contour of the entire landfill is provided Figure III7-1, Final Contour Map. The final contours consist of 4 horizontal to 1 vertical (4H:1V) sideslopes and the upper portions of the final cover are sloped at a minimum 5-percent grade to a maximum elevation of approximately 398 ft-msl. Drainage features including on the final cover are add-on berms designed to intercept run-off from the top surface and along the sideslopes and direct it to downchutes. The downchutes convey stormwater run-off to the perimeter channels and stormwater ponds. These drainage structures as well as the drainage entering and departing the facility are shown on Figure III7-1, Final Contour Map. A perimeter berm protects the facility from flooding due to a 100-year frequency storm as depicted in Part IIC, Floodplains. Details of the surface water management features are included in Part III2, Surface Water Drainage Report. Cross-sections of the final filled condition are included as Figures III7-2A - III7-2E.

1.2 **Final Cover System**

The City shall install a final cover system for the unit that is constructed to minimize infiltration and erosion. The final cover system at the facility will consist of a conventional composite system meeting the requirements of 30 TAC §330.457(a)(1) or alternative final cover systems meeting the requirements of 30 TAC §330.457(d). The final cover systems will provide a low maintenance cover, protect against erosion, reduce rainfall percolation through the cover system and minimize leachate generation within the landfill.

1.2.1 **Conventional Composite System**

30 TAC §330.457(a)

The conventional composite final cover will consist of the following from top to bottom:

- Erosion layer consisting of 24 inches of protective soil cover, of which the uppermost 6 inches will be capable of supporting native vegetation.
- Double-sided geocomposite (geotextile/geonet/geotextile) drainage layer.
- 40-mil linear low-density polyethylene (LLDPE) textured geomembrane that has a permeability less than or equal to the permeability of the bottom liner system.
- 18-inch thick compacted clay rich earthen material with a hydraulic conductivity of 1x10⁻⁵ cm/sec or less.

Figure III7-3A, Conventional Composite Final Cover Details includes final cover and drainage feature installation details.

The erosion layer shall be composed of no less than two feet of soil where the first 18 inches shall be of clayey soil and the uppermost 6 inches shall be of suitable topsoil that is capable of sustaining native plant growth and shall be seeded or sodded immediately following the application of the final cover in order to minimize erosion.

Double-sided geocomposite (geotextile/geonet/geotextile) drainage layer shall be installed top of the geomembrane to prevent the buildup of excess pore water pressure at the on the geomembrane interface. Calculations are provided in Part III, Waste Management Unit Design Report.

A 40-mil linear low-density polyethylene (LLDPE) textured geomembrane that has a permeability less than or equal to the permeability of any bottom liner system shall be installed on top of an 18-inch thick compacted clay rich earthen material with a hydraulic conductivity of 1x10⁻⁵ cm/sec or less. The thickness of the 40-mil LLDPE textured geomembrane is of adequate thickness to ensure proper seaming.

1.2.2 Alternative Composite System

30 TAC §330.457(d)

The alternative composite final cover varies from the conventional composite system by substituting a geosynthetic clay liner for the 18-inch thick compacted clay rich earthen material and will consist of the following from top to bottom:

- Erosion layer consisting of 24 inches of protective soil cover, of which the uppermost 6 inches will be capable of supporting native vegetation.
- Double-sided geocomposite (geotextile/geonet/geotextile) drainage layer.
- 40-mil linear low-density polyethylene (LLDPE) textured geomembrane that has a permeability less than or equal to the permeability of the bottom liner system.
- Geosynthetic Clay Liner.

Figure III7-3B, Alternative Composite Final Cover Details includes final cover and drainage feature installation details.

Appendix III7A, Alternative Composite Final Cover Demonstration shows that use of geosynthetic clay liner achieves a greater or equal to reduction in infiltration in comparison to 18-inch thick compacted clay rich earthen material.

1.2.3 Alternative Synthetic Grass System

30 TAC §330.457(d)

The alternative synthetic grass final cover will consist of the following from top to bottom:

HDPE synthetic grass

- Sand infill
- Woven geotextile filter backing
- 50-mil linear low density polyethylene (LLDPE) Super Gripnet® geomembrane with integrated drainage layer

Figure III7-3C, Alternative Synthetic Grass Final Cover Details includes final cover and drainage feature installation details.

Appendix III7B, Alternative Synthetic Grass Final Cover Demonstration shows that ClosureTurf® provides a level of infiltration reduction and wind and water protection that is greater than or equal to the level of protection provided by the standard composite final cover system. In addition, the ClosureTurf® offers other advantages over the standard composite final cover system.

2.0 CLOSURE

Waste disposal areas designated as units in this application do not have discrete individual final cover systems but share one final cover; therefore, for the purposes of closure, they will be collectively referred to as the MSW landfill unit. Final cover installation will be done in installments as areas of the MSW landfill unit attain permitted elevation. Part II, Facility Layout of this application describes the anticipated schedule of development for the facility. Figures II-20 – II-25, Operational Sequence I – VI show areas of final cover placement as waste is filled to permitted elevation.

2.1 Maximum Closure Area

30 TAC §330.457(e)(2)

Based on the Figure II-20A, Operational Fill Sequence I of site development discussed in Part II, Facility Layout of this application, the maximum closure area or estimate of the largest area of the MSW landfill unit ever requiring final cover at any time during the active life is approximately 159.1 acres. Figure III7-4, Maximum Closure Area includes the active face and areas with daily or intermediate cover in place.

2.2 Maximum Inventory of Wastes

30 TAC §330.457(e)(3)

The maximum inventory of waste ever on-site over the active life of the facility is both the capacity of MSW landfill unit and storage or processing areas. Waste in storage or processing areas at final facility closure will either be disposed in the landfill or transported to an authorized facility, therefore the maximum inventory of waste is the capacity of the MSW landfill unit.

2.2.1 Facility

The maximum inventory of waste ever on-site over the active life of the facility is 87,301,156 cubic yards as demonstrated in Part III3A-1, Volume Calculations of this application. The volume represents

the total volume available for in-place solid waste and daily and intermediate cover soils. Wastes accepted for disposal in accordance with Part II, Waste Acceptance Plan are typically compacted in place at the working face as they are received.

2.2.2 Storage or Processing Areas

Waste in storage or processing areas at final facility closure will either be disposed in the landfill or transported to an authorized facility. Closure for the storage and processing areas at the site is addressed as follows:

- Mulch area: Brush will be mulched used for erosion control applications.
- Liquid waste stabilization area: Upon closure, the waste remaining in the stabilization basin will be properly stabilized and disposed of in the landfill. The stabilization basin will be disposed of within the landfill.
- Whole tire staging area: At time of closure, tires in the staging area will be processed by grinding or other means to reduce size to quartered or split and disposed of in the landfill or another authorized facility.
- Large Item/White Goods Storage Area: Large items/white goods stored on-site at time
 of closure will be either transported offsite for recycling or disposed of at an authorized
 facility.
- Reusable materials staging area: Reusable materials will transported off-site for to reusable material end user locations.

2.3 MSW Landfill Unit Closure Implementation

30 TAC §330.457(e)(4)

A schedule for completing all activities necessary to satisfy the closure criteria for the MSW landfill unit is as follows in accordance with 30 TAC §330.457(f). The closure process will follow the procedures listed in Appendix III7C, TCEQ Closure Plan Form.

2.3.1 Closure Plan Placed in Operating Record by Initial Receipt of Waste

30 TAC §330.457(f)(1)

Because waste is currently received by the facility under TCEQ Permit MSW-956B, the City shall place a copy of this closure plan in the operating record upon issuance of TCEQ Permit MSW-956C.

2.3.2 Closure Notice to TCEQ

30 TAC §330.457(f)(2)

No later than 45 days prior to the initiation of closure activities for the MSW landfill unit, the City shall provide written notification to the TCEQ of the intent to close the unit and place this notice of intent in the operating record.

2.3.3 Begin Closure Activities

30 TAC §330.457(f)(3)

The City shall begin closure activities for the MSW landfill unit no later than 30 days after the date on which the unit receives the known final receipt of wastes or, if the unit has remaining capacity and there is a reasonable likelihood that the unit will receive additional wastes, no later than one year after the most recent receipt of wastes. A request for an extension beyond the one-year deadline for the initiation of closure may be submitted to the TCEQ for review and approval and shall include all applicable documentation necessary to demonstrate that the unit has the capacity to receive additional waste and that the City has taken and will continue to take all steps necessary to prevent threats to human health and the environment from the MSW landfill unit.

2.3.4 Complete Closure Activities

30 TAC §330.457(f)(4)

The City shall complete closure activities for the MSW landfill unit within 180 days following the initiation of closure activities. These activities include placing all the final cover components to design grades and elevations over the waste mass utilizing methods, procedures, and specifications described in the Final Cover Quality Control Plan and installation of any outstanding or replacement of any damaged post-closure monitoring devices such as monitoring wells, gas probes, and the gas collection system. A request for an extension for the completion of closure activities may be submitted to the TCEQ for review and approval and shall include all applicable documentation necessary to demonstrate that closure will, of necessity, take longer than 180 days and all steps have been taken and will continue to be taken to prevent threats to human health and the environment from the unclosed MSW landfill unit.

2.3.5 Following Completion of Closure Activities

30 TAC §330.457(f)(5)

Following completion of all closure activities for the MSW landfill unit, the City shall comply with the post-closure care requirements specified in Part III8, Post-Closure Plan. The City shall submit to the TCEQ by registered mail for review and approval a certification, signed by an independent licensed professional engineer, verifying that closure has been completed in accordance with this closure plan. The submittal to the executive director shall include all applicable documentation necessary for certification of closure. Once approved, this certification shall be placed in the operating record.

2.3.6 TCEQ Closure Acknowledgement

30 TAC §330.457(f)(6)

Following receipt of the required closure documents, as applicable, and an inspection report from the TCEQ's regional office verifying proper closure of the MSW landfill unit according to this closure plan, the TCEQ may acknowledge the termination of operation and closure of the unit and deem it properly closed.

2.4 Final Facility Closure

Certification of final facility closure will be accomplished in accordance with 30 TAC §330.461.

2.4.1 Public Notice

30 TAC §330.461(a)

No later than 90 days prior to the initiation of a final facility closure, the City shall, through a public notice in the newspaper(s) of largest circulation in the vicinity of the facility, provide public notice for final facility closure. This notice shall provide the name, address, and physical location of the facility; the permit, registration, or notification number, as appropriate; and the last date of intended receipt of waste. The City shall also make available an adequate number of copies of the approved final closure and post-closure plans for public access and review.

2.4.2 Written Notification to TCEQ

30 TAC §330.461(a)

No later than 90 days prior to the initiation of a final facility closure, the City shall provide written notification to the TCEQ of the intent to close the facility and place this notice of intent in the operating record.

2.4.3 Facility Closure Sign Posting

30 TAC §330.461(b)

Upon written notification to the TCEQ, the City shall post a minimum of one sign at the main entrance and all other frequently used points of access for the facility notifying all persons who may utilize the facility of the date of closing for the entire facility and the prohibition against further receipt of waste materials after the stated date.

2.4.4 Access Barriers

30 TAC §330.461(b)

Upon written notification to the TCEQ, suitable barriers shall be installed at all gates or access points to adequately prevent the unauthorized dumping of solid waste at the closed facility.

2.4.5 Deed Recordation

30 TAC §330.457(g) & §330.461(c)(1)

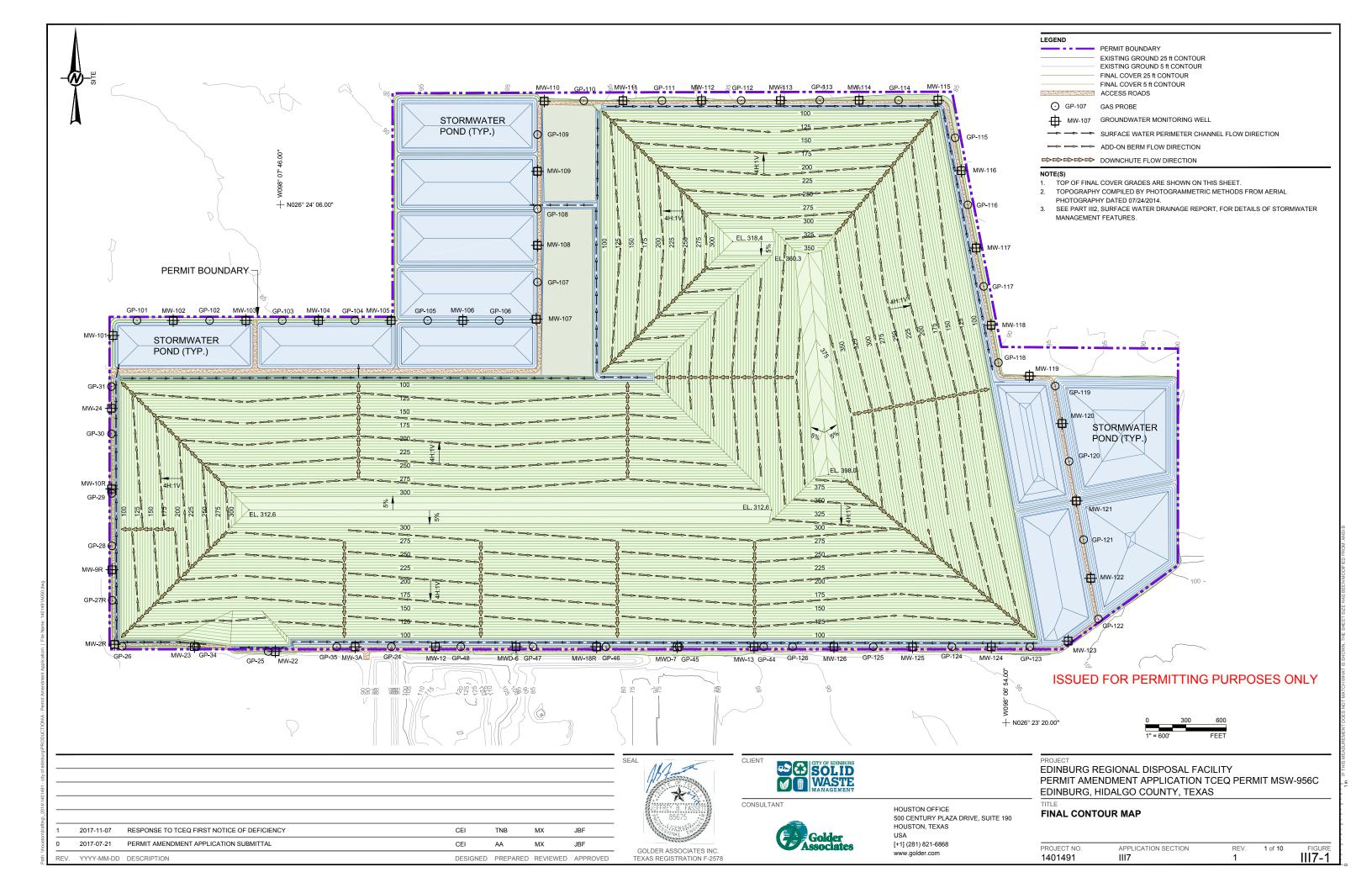
Within ten days after closure of the MSW landfill unit, the City shall submit to the TCEQ by registered mail a certified copy of an "affidavit to the public" in accordance with the requirements of 30 TAC §330.19, Deed Recordation and place a copy of the affidavit in the operating record. In addition, the City shall record a certified notation of the deed to the facility property, or on some other instrument that is normally examined during title search, that will in perpetuity notify any potential purchaser of the property that the land has been used as a landfill facility and use of the land is restricted according to the provisions specified in 30 TAC §330.465 Certification of Post-Closure Care. The City shall submit a certified copy of the modified deed to the TCEQ and place a copy of the modified deed in the operating record.

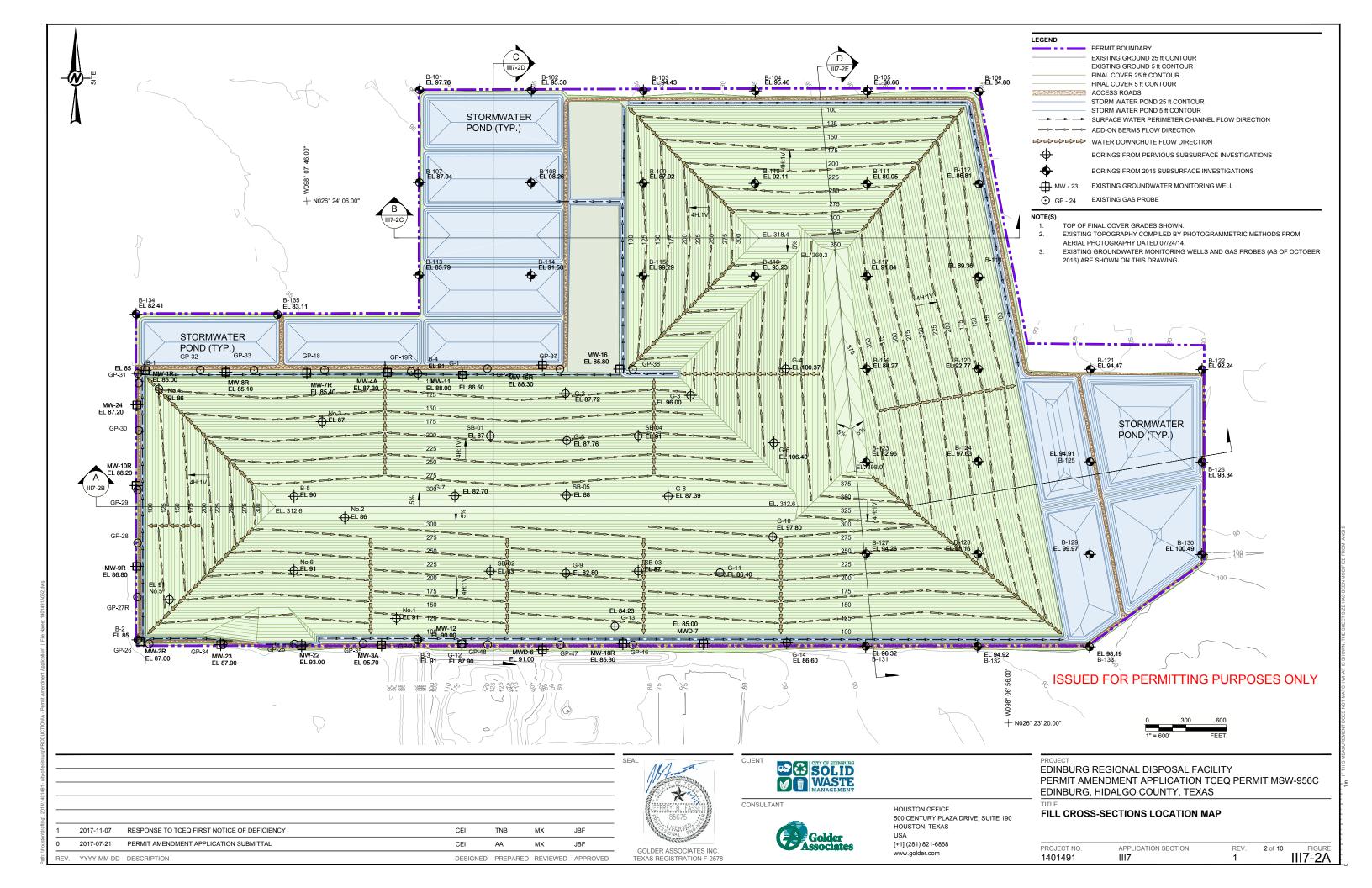
2.4.6 Certification

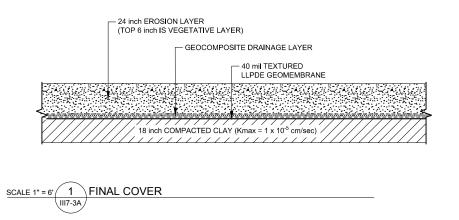
30 TAC §330.461(c)(2)

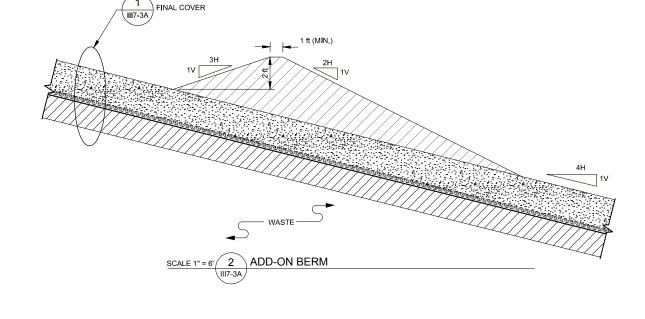
Within ten days after completion of final closure activities, a certification, signed by an independent licensed professional engineer, verifying that final facility closure has been completed in accordance with this closure plan. The submittal to the TCEQ shall include all applicable documentation necessary for certification of final facility closure. Once approved, the certification will be placed in the site's operating record.

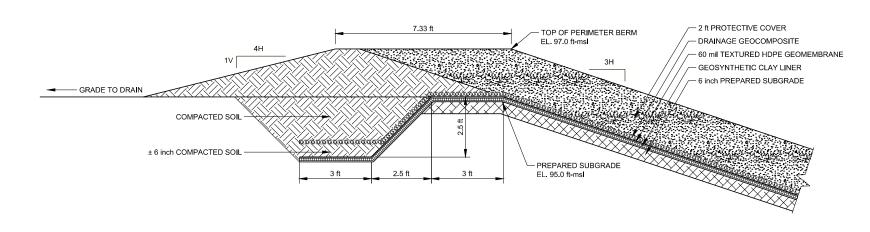
Following receipt of the required final closure documents and an inspection report from the TCEQ's regional office verifying proper closure of the facility according to this closure plan, the TCEQ may acknowledge the termination of operation and closure of the facility and deem it properly closed. Post-closure care maintenance will begin immediately upon the date of final closure as approved by the TCEQ. All post-closure land use will comply with 30 TAC §330.463, as indicated in the Post-Closure Plan. Appendix III7C, TCEQ Closure Plan Form, provides guidance to detail the plan for closure of a landfill unit, closure of associated storage or processing areas, and final closure of the facility to meet the requirements in 30 TAC Chapter 330, §330.63(h) and 30 TAC Chapter 330 Subchapter K for a MSW Type I facility.

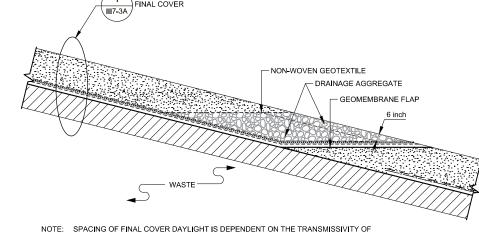


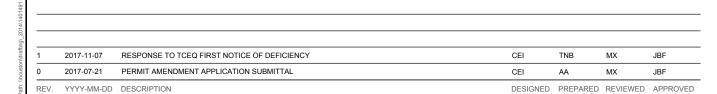

3.0 FINAL COVER QUALITY CONTROL PLAN


30 TAC §330.457(c)


Appendix III7D, Final Cover Quality Control Plan (FCQCP) describes the final cover system design, construction, and evaluation protocol and processes, including the personnel, materials, methods, sampling and testing standards, procedures, and practices to be used in procuring, handling, installing, and evaluating all elements of the final cover system. It establishes the material requirements; personnel qualifications and roles; installation requirements; quality control and quality assurance monitoring, testing, documentation, and reporting programs to be used during construction of each component of the final cover system to assure and to verify that the final cover system is constructed as designed and in accordance with applicable rules and technical standards. The alternative synthetic grass final cover differs considerably from the conventional composite final cover and the alternative composite final cover, therefore a separate FCQCP has been prepared.


- Appendix III7D-1 Conventional Composite and Alternative Composite Final Cover Systems.
- Appendix III7D-2 Alternative Synthetic Grass Final Cover System.

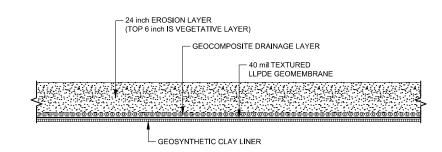



SCALE 1" = 4' 3 LANDFILL PERIMETER

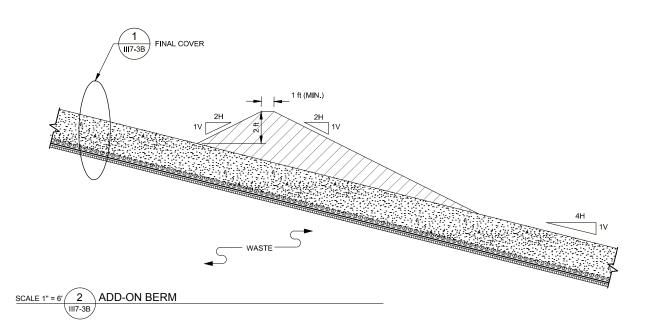
NOTE: SPACING OF FINAL COVER DAYLIGHT IS DEPENDENT ON THE TRANSMISSIVITY OF THE GEOCOMPOSITE DRAINAGE LAYER USED. PLEASE REFER TO PART III3B-2E-2, FINAL COVER DRAINAGE LAYER CAPACITY FOR SPACING REQUIREMENTS.

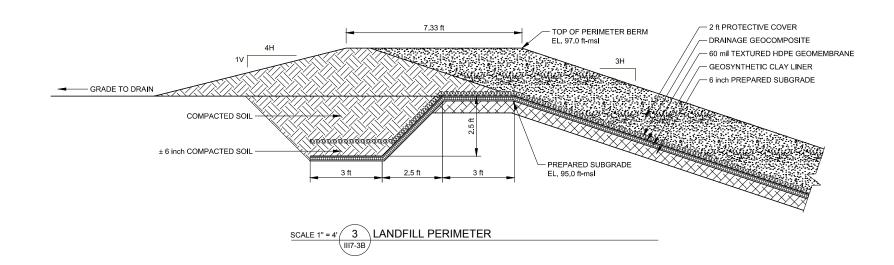
SCALE 1" = 6' 4 FINAL COVER DAYLIGHT

ISSUED FOR PERMITTING PURPOSES ONLY



CONSULTANT

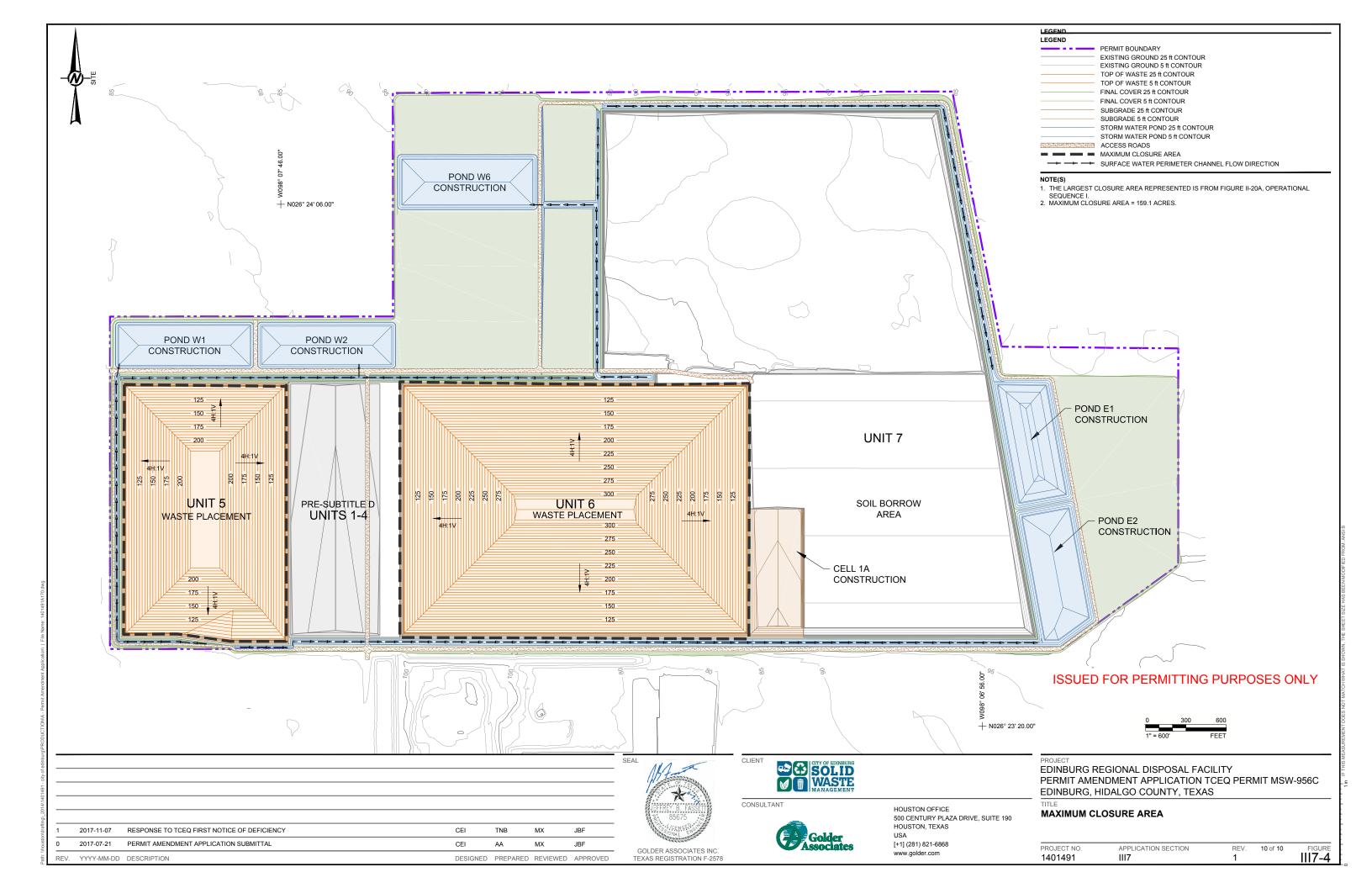



HOUSTON OFFICE 500 CENTURY PLAZA DRIVE, SUITE 190 HOUSTON, TEXAS USA [+1] (281) 821-6868 www.golder.com PROJECT
EDINBURG REGIONAL DISPOSAL FACILITY
PERMIT AMENDMENT APPLICATION TCEQ PERMIT MSW-956C
EDINBURG, HIDALGO COUNTY, TEXAS

CONVENTIONAL COMPOSITE FINAL COVER DETAILS

ISSUED FOR PERMITTING PURPOSES ONLY

- I							
-							
Ť							
07-16							
1		2017-11-07	RESPONSE TO TCEQ FIRST NOTICE OF DEFICIENCY	CEI	TNB	MX	JBF
0		2017-07-21	PERMIT AMENDMENT APPLICATION SUBMITTAL	CEI	AA	MX	JBF
RE\	٧.	YYYY-MM-DD	DESCRIPTION	DESIGNED	PREPARED	REVIEWED	APPROVED


CONSULTANT

HOUSTON OFFICE 500 CENTURY PLAZA DRIVE, SUITE 190 HOUSTON, TEXAS USA [+1] (281) 821-6868 www.golder.com EDINBURG REGIONAL DISPOSAL FACILITY
PERMIT AMENDMENT APPLICATION TCEQ PERMIT MSW-956C
EDINBURG, HIDALGO COUNTY, TEXAS

ALTERNATIVE COMPOSITE FINAL COVER DETAILS

PROJECT NO. 1401491	APPLICATION SECTION III7	REV.	8 of 10	FIGUR
	****	•		IIII OL

PART III, ATTACHMENT 7, **APPENDIX A**

ALTERNATE COMPOSITE FINAL COVER DESIGN DEMONSTRATION

Edinburg Regional Disposal Facility Edinburg, Hidalgo County, Texas TCEQ Permit MSW-956C

Submitted To: City of Edinburg

Department of Solid Waste Management

8601 North Jasman Road Edinburg, Texas 78542 USA

Submitted By: Golder Associates Inc.

Revised: November 2017

500 Century Plaza Drive, Suite 190

Houston, TX 77073 USA

GOLDER ASSOCIATES INC.

Professional Engineering Firm Registration Number F-2578

INTENDED FOR PERMITTING **PURPOSES ONLY**

July 2017 Project No. 1401491

Table of Contents

1.0	INTRODUCTION	1
1.1	Alternative Composite Liner System	1
2.0	EQUIVALENCY	1
2.1	Leakage Rate Estimates	1
2.2	Wind And Water Erosion	2
2.0	CHMMADV	,

List of Appendices

Appendix III7AA Infiltration Rate Comparison – GCL Alternate Final Cover

GOLDER ASSOCIATES INC. Professional Engineering Firm Registration Number F-2578

INTENDED FOR PERMITTING PURPOSES ONLY

Revised: November 2017

1.0 INTRODUCTION

This alternative composite final cover design demonstration will demonstrate that the use of geosynthetic clay liner (GCL) will provide equivalent infiltration and protection from wind and water erosion as the conventional composite final cover defined in 30 TAC §330.457(a).

1.1 Alternative Composite Liner System

The alternative composite final cover system is summarized in below.

GCL Alternative Final Cover System

24-inch thick erosion layer

Double-sided geocomposite drainage layer

40-mil LLDPE textured geomembrane

GCL

GCLs are geocomposite materials of low hydraulic conductivity used frequently in liner systems. Several manufacturers produce GCLs with varying characteristics. In general, GCLs are manufactured by placing powdered or granulated bentonite on a geotextile or geomembrane substrate. The bentonite layer is typically 7 to 10 mm thick (following hydration) and is placed at a unit weight of approximately 0.8 pounds per square feet (lb/ft²). The GCLs with a geotextile substrate also have a covering geotextile, which is often needle-punched, connecting the underlying geotextile to increase the structural integrity. Non-woven and woven geotextiles of various weights are used.

Typically, the permeability of the bentonite component of GCLs ranges from less than 1 x 10⁻⁹ to 5 x 10⁻⁹ cm/sec.

2.0 **EQUIVALENCY**

2.1 Leakage Rate Estimates

The leakage through composite liners can be estimated using the "Giroud equation", presented in Giroud et al, 1997. The method requires several assumptions regarding the characteristics of the composite liner. First, it is assumed that permeation through the full area of the geomembrane is insignificant in comparison to rapid leakage through isolated defects or holes. It is also necessary to make assumptions regarding the extent to which intimate contact has been achieved. A composite liner that possesses intimate contact has been constructed such that the geomembrane lies flush with the surface of the underlying clay component, with few or no gaps between the two liners. When intimate contact has been

Revised: November 2017

achieved, the effective area of leakage is very small, and the total liner system leakage is minimized. This phenomenon is referred to as "composite action."

The equation used in the analysis is derived both from theoretical models of fluid flow and from empirical analyses of actual composite liner systems. Flow through a circular defect in a composite liner is calculated as:

$$Q = C[1+0.1(h/t_s)^{0.95}]a^{0.1}h^{0.9}k_s^{0.74}$$

where:

Q = rate of leakage through a defect (m³/sec)

C = Dimensionless constant related to the quality of the intimate contact between the geomembrane and the underlying soil component

h = hydraulic head on the geomembrane (m)

ts = thickness of the low-permeability soil component (i.e., the CCL or GCL) (m)

a = area of geomembrane defect (m²)

 k_s = permeability of soil component (i.e., CCL or GCL) (m/s)

Using the above equation, the conventional composite final cover system was compared to the alternative composite final cover system for both "good" and "poor" intimate contact and for circular holes with an area of 0.1 and 1.0 cm².

As shown on the calculations in Appendix III7AA, Infiltration Rate Comparison – GCL Alternate Final Cover for each condition, the alternative composite final cover had calculated leakage rates approximately 1/250th that of the geomembrane/compacted clay liner system.

2.2 Wind And Water Erosion

The alternative composite final cover surface will be seeded or sodded.

3.0 SUMMARY

Based on this analysis, it is apparent that substituting a GCL for an 18-inch thick compacted clay rich earthen material with a hydraulic conductivity of 1x10⁻⁵ cm/sec provides a level of infiltration reduction and wind and water protection that is greater than or equal to the level of protection provided by the conventional composite final cover system.

Submitted: July 2017 Revised: November 2017

APPENDIX III7AA

INFILTRATION RATE COMPARISON - GCL ALTERNATE FINAL COVER

INFILTRATION RATE COMPARISON - GCL ALTERNATE FINAL COVER

Made By: JBF Checked by: CEI Reviewed by: MX

OBJECTIVE

Compare the infiltration rate through a conventional composite final cover system with the infiltration rate through the alternative composite final cover system.

GIVEN

The conventional composite final cover system consists of a 40-mil geomembrane overlying a 18-inch thick compacted clay rich material with a maximum hydraulic conductivity of 1 x 10-5 cm/s. In the alternative composite final cover system, the compacted clay rich (the infiltration layer) material will be replaced with a geosynthetic clay liner (GCL). Both final covers include a geocomposite drainage layer above the geomembrane.

GOLDER ASSOCIATES INC. Professional Engineering Firm Registration Number F-2578

Infiltration Layer Properties

k = 1.00E-05 cm/s
t = 1.5 ft
h = 0.2 inches
 sized to prevent head > 0.2
 inches when cover soil
 saturated)

GCL Properties

INTENDED FOR PERMITTING , PURPOSES ONLY

k = 5.00E-09 cm/s t = 7 mmh = 0.2 inches

(geocomposite drainage layer sized to prevent head > 0.2 inches when cover soil saturated)

METHOD

Estimate the infiltration rate through each final cover system using the Giroud Equation (Ref. 1). Compare the infiltration rate through composite final cover systems consisting of a geomembrane/clay rich material and a geomembrane/GCL.

Infiltration through composite geomembrane/GCL liner.

$$Q = C[1+0.1(h/t_s)^{0.95}]a^{0.1}h^{0.9}k_s^{0.74}$$
 Ref 1

where:

C = 0.21 for good contact 1.15 for poor contact

h = head(m)

t_s = thickness of low permeability soil component (i.e. CCL or GCL) (m)

a = area of hole (m²)

 k_s = hydraulic conductivity of CCL or GCL (m/s)

III7AA Pg. 1 of 2

Revised: November 2017

RESULTS

Leakage Rate Per Defect

Intimate Contact		Go	ood	Po	oor
Composite Cover System		GM/Clay	GM/GCL	GM/Clay	GM/GCL
Leakage	0.1 cm ² hole	3.79E-09	1.46E-11	2.07E-08	8.02E-11
(m ³ /sec)	1 cm ² hole	4.77E-09	1.84E-11	2.61E-08	1.01E-10

Comparison

Intimate Contact	$Q_{GM/Clay}\!/Q_{GM/GCL}$					
	0.1 cm ² hole	1 cm ² hole				
Good	259	259				
Poor	259	259				

CONCLUSION

Based on this analysis, the infiltration rate through an alternative composite final cover system with a GCL will be approximately 1/250th that of the conventional composite final system with a clay rich infiltration layer.

REFERENCE

1) Giroud, J.P., "Equations for Calculating the Rate of Liquid Migration Through Composite Liners Due to Geomembrane Defects", Geosynthetics International, Vol. 4, Nos. 3-4, pp. 335-348, 1997.

APPENDIX III7C TCEQ CLOSURE PLAN FORM

Texas Commission on Environmental Quality

Closure Plan for Municipal Solid Waste Type I Landfill Units and Final Facility Closure

This form is for use by applicants or site operators of Municipal Solid Waste (MSW) Type I landfills to detail the plan for closure of a landfill unit, closure of associated storage or processing units, and final closure of the facility to meet the requirements in 30 TAC Chapter 330, §330.63(h) and 30 TAC Chapter 330 Subchapter K for a MSW Type I facility.

If you need assistance in completing this form, please contact the MSW Permits Section in the Waste Permits Division at (512) 239-2335.

I. General Information

Facility Name: Edinburg Regional Disposal Facility

MSW Permit No.: MSW-956C

Site Operator/Permittee Name: City of Edinburg

II. Landfill and Other Waste Management Units and Operations Requiring Closure at the Facility

A. Facility Units

Table 1. Description of the Landfill Unit. (Note the contiguous waste disposal areas designated as units in this application collectively share one final cover system and comprise a single landfill unit)

Name or Descriptor of Unit	Operating Status of Unit	Type of Liner System Under Unit	Above Grade Class 1 Disposal Cells in this Unit	Below Grade Class 1 Disposal Cells in this Unit	Other Class 1 Disposal Cells in this Unit (describe)	Size of Unit's Waste Footprint (acres)	Maximum Inventory of Waste Ever in Unit (cubic yards)	Other Necessary Information that Pertains to the Unit
Pre- Subtitle D Units 1 - 4	Inactive	None Few cells have GM				29.2	1,027,858	Final cover soil in place. Certification not found.
Unit 5	Active	Alternative liner				52.9	3,723,273	
Unit 6	Active	Alternative liner				110.8	11,983,781	
Unit 7 and Unit 8 / Overliner	Construction following permit issuance	Alternative liner				213.1	70,566,243	Unit 8 or Overliner option to be constructed
Totals				406.0	87,301,156			

Facility Name: Edinburg Regional Disposal Facility

Permit No: MSW-956C Date: July 2017, Revised:

Revision No.:

November 2017

Table 2. Description of Waste Storage or Processing Areas or Operations Associated with this Permit.

Type of Storage or Processing Unit or Operation (individual units may be closed at any time prior to or during the final facility closure as described in this plan)	Operational Status of Unit	Size of the Area Used for the Storage or Processing Unit or Operation (Acres)	Maximum Inventory of Waste Ever in Storage or Processing Unit or Operation (indicate cubic yards or tons)	Other Information (enter other necessary information that pertains to the unit)
Mulching	Active	1.0	4,000 - Assumed ⊠cubic yards □tons	Waste in storage or processing areas will
Liquid Stabilization	Operational following permit issuance	0.04	400 - Assumed ⊠cubic yards ☐tons	either be disposed in the landfill or transported to an authorized facility.
Reusable Materials	Active	0.02	200 - Assumed ⊠cubic yards □tons	Therefore inventory of waste in storage or
Whole Tire Staging	Active	0.004	40 - Assumed ⊠cubic yards □tons	processing areas or operations is included in capacity of the landfill unit.
Totals		1.064	4,640	

B. Waste Inventory Summary

Table 3. Maximum Inventory of Wastes Ever On Site.

Item	Quantity (indicate cubic yards or tons)
Maximum inventory of waste in landfill units (total from Table 1)	87,301,156 ⊠cubic yards or □tons
Maximum inventory of waste in storage or processing areas or operations (total from Table 2)	0 ⊠cubic yards or □tons Waste in storage or processing units will either be disposed in the landfill or transported to an authorized facility.
Total Maximum Inventory of Wastes ever on site over the active life of the MSW facility (sum of totals from Tables 1 and 2)	87,301,156 ⊠cubic yards or □tons

Facility Name: Edinburg Regional Disposal Facility

Permit No: MSW-956C July 2017, Revised: Date:

Revision No.:

November 2017

C. Drawings Showing Details of the Waste Management Units at Closure

Table 4. Location of the Drawings showing Details of the Waste Management Units at Closure (outlines, dimensions, maximum elevations of waste and final cover of landfill units, and waste storage or processing areas or operations at closure of the facility).

Drawing Location in the SDP	Drawing Figure Number	Drawing Title	Waste Management Units Details Shown
Part III, Attachment 3	III3-1	Facility Layout Plan	e.g., outline, waste footprint, and dimensions of the landfill unit
Part III, Attachment 7	III7-1	Final Contour Map	e.g., maximum elevations of waste and final cover of the landfill unit
Part III, Attachment 1	III1-2	Schematic View of Various Waste Disposal, Processing, and Storage Areas	e.g., outlines and dimensions of the storage and processing area(s)

III. Description of the Final Cover System Design

A. Types and Descriptions of the Final Cover Systems

Table 5. Types and Descriptions of the Final Cover Systems Permitted or Proposed for Closure of the Landfill Units.

Landfill Unit Name or Descriptor	Type of Final Cover System	Final Cover System Components Description	Other Information (Enter other information as applicable)	
	Conventional Composite	24-inch erosion layer with upper 6 inches capable of supporting vegetation, double-side geocomposite, 40-mil LLDPE, 18-inch compacted clay 1x10 ⁻⁵ cm/s	Three final cover system options are provided for closure.	
	Alternative Composite	24-inch erosion layer with upper 6 inches capable of supporting vegetation, double-side geocomposite, 40-mil LLDPE, geosynthetic clay liner		
	Alternative Synthetic Grass	HDPE synthetic grass, sand infill, geotextile, 50-mil LLDPE Super Gripnet® geomembrane		

Facility Name: Edinburg Regional Disposal Facility Revision No.:

Permit No: MSW-956C Date: July 2017, Revised:

November 2017

B. Design Details

Table 6. Design Details of the Final Cover Top and Side Slopes for the Landfill Units.

Landfill Unit Name or Descriptor	Maximum Final Elevation of Waste (feet above mean sea level [ft-msl])	Maximum Elevation of Top of Final Cover (ft-msl)	Minimum Grade of the Final Cover Top Slope (%)	Maximum Grade of the Final Cover Side Slope (%)	Other Information (enter other information as applicable, e.g. above- grade Class 1 Cell Dikes)	
Conventional Composite Option	394.5	398.0	5	25	Three final cover system options are	
Alternative Composite Option	396.0	398.0	5	25	provided for closure. Final cover grades are not to	
Alternative Synthetic Grass Option	398.0	398.0	5	25	exceed those in Figure III7- 1, Final Contour Map	

C. Final Cover Drainage Features

Storm water drainage and erosion and sediment control features incorporated on the final cover of the landfill units to protect the integrity and effectiveness of the final cover system include (please list and describe the drainage features to be installed on the final cover at or prior to closure for each landfill unit, or list the drainage features and provide cross references on the location(s) of the descriptive and details (drawing) information in other parts of the SDP):

Part III2, Surface Water Drainage Report contains details on drainage features to be installed on the final cover prior to closure for each landfill unit which includes add-on berms and downchutes.

Figure III2-2 Post-Development Drainage Plan

Drainage Control Details I - Channels and Berms Figure III2-3

Figure III2-4 Drainage Control Details II - Stormwater Downchute Details and Crossings

Facility Name: Edinburg Regional Disposal Facility

Permit No: MSW-956C Date: July 2017, Revised:

Revision No.:

0

November 2017

D. Final Cover Vegetation or Other Ground Cover Material

The final cover will be seeded and/or sodded with native plants immediately following the application of the final cover in order to minimize erosion. Other materials, including mulch and geosynthetic erosion control products, may be incorporated over the final cover soil surface to ensure sufficient coverage of the ground surface to minimize erosion. The estimated percent ground cover to minimize soil loss and maintain long-term erosional stability of the final cover top and side slopes is: 90%. The minimum material specifications for other ground cover materials are summarized in the table below.

For a landfill with water balance final cover design, the percentage vegetation cover (excluding other ground cover types) will not be less than that assumed in the water balance final cover model.

Table 7. Minimum Specification for Ground Cover Materials Other Than Vegetation, if Applicable.

Other Ground Cover Material	Maximum Particle Size (inches)	Minimum Particle Size (inches)	Material Placement Method	Thickness of Layer (inches)	Percentage Coverage (%)	Other (specify)
Mulch	Varies	Varies	Spread	Varies	Varies	
Geosynthetic Erosion Control Products	NA	NA	Install	Varies	Varies	

E. Final Contour Map

Figure III7-1, a facility final contour map is attached. The map shows the final contours of the landfill units and the entire facility at closure.

Figures III7-3A and III7-3E showing the cross-sections of the landfill units at closure are also provided.

The facility final contour and cross-section maps/drawings depict the following information:

- Final constructed contours of the landfill at closure. (1)
- Top slopes and side slopes of the landfill units. (2)
- Surface drainage features. (3)
- (4) 100-year floodplain, as applicable.
- Constructed features providing protection of/from the 100-year floodplain. (5)
- (6) Other (specify): N/A

Facility Name: Edinburg Regional Disposal Facility

Permit No: MSW-956C

November 2017

Revision No.:

July 2017, Revised: Date:

0

IV. Description of the Final Cover System Installation Procedure

A. Mode of Installation

Table 8. Mode of Final Cover Installation on the Landfill Units.

Landfill Unit Name or Descriptor	Largest Area of Unit Ever Requiring Final Cover (Acres)	Check this Column if Final Cover will be Placed in Installments as Permitted Elevation is Reached	Check this Column if Final Cover will be Placed when Entire Unit Area Reaches Permitted Elevation	Final Cover Installation Status
	159.1			Yet to be installed

B. Installation Drawings for Final Cover and Drainage Features

The following attached plan and cross-section drawings show the final cover design details, the largest area requiring final cover, details of the sequence of installation of the final cover system, and all drainage features.

Table 9. List of Attached Installation Drawings for Final Cover and Drainage Features.

Drawing No.	Drawing Title	Description of Information Contained in Drawing
III7-1	Final Contour Map	Plan drawing of final fill and drainage features
III7-2	Fill Cross-Sections	Fill Cross Section Location Map including profiles
III7-3	Final Cover Details	Details of final cover components and drainage features
III7-4	Maximum Closure Area	Area of maximum closure from sequence of site development in Part II

Facility Name: Edinburg Regional Disposal Facility

Permit No: MSW-956C Date: July 2017, Revised:

Revision No.:

0

November 2017

C. Final Cover Quality Control Plan

A final cover quality control plan (FCQCP), Attachment **III7D**, is attached. The FCQCP describes the final cover system design, construction, and evaluation protocol and processes, including the personnel, materials, methods, sampling and testing standards, procedures, and practices to be used in procuring, handling, installing, and evaluating all elements of the final cover system. It establishes the material requirements; personnel qualifications and roles; installation requirements; quality control and quality assurance monitoring, testing, documentation, and reporting programs to be used during construction of each component of the final cover system to assure and to verify that the final cover system is constructed as designed and in accordance with applicable rules and technical standards.

D. Documentation and Reporting of Final Cover System Construction and Testing

The professional of record will document all aspects and stages of the final cover installation, including materials used, equipment and construction methods, and the type and rate of sampling and quality control testing performed. Following completion of construction of the final cover, the site operator/permittee will submit to the TCEQ executive director, a Final Cover System Evaluation Report (FCSER) for each landfill unit.

V. Closure Activities and Completion Schedules for Each Landfill Unit and for the Final Facility Closure

A. Closure of a Landfill Unit

The following activities will be conducted to satisfy the closure criteria for a landfill unit:

(1) Closure Notification to the TCEQ Executive Director:

The site operator will inform the executive director of the TCEQ, in writing, of the intent to close the unit no later than 45 days prior to the initiation of closure activities and place this notice of intent in the operating record.

(2) Stoppage of Waste Acceptance and Commencement of Other Closure Activities for the Unit:

The site operator will stop accepting waste upon receiving the known final receipt of waste. The site operator will ensure that the permitted top elevations of the in-place waste, as depicted in/derived from the unit's final contour map approved by the TCEQ executive director, are not exceeded at any section or part of the landfill unit. The site operator will begin closure activities for the unit no later than:

• Thirty days after the date on which the unit receives the known final receipt of wastes; or

Facility Name: Edinburg Regional Disposal Facility Revision No.: 0
Permit No: MSW-956C Date: July 2017, Revised:

November 2017

 One year after the most recent receipt of wastes if the unit has remaining capacity and there is a reasonable likelihood that the unit will receive additional wastes.

(3) Request for Extension Beyond the 1-Year Deadline for Commencing Closure Activities for a Unit:

The site operator may submit a written request to the executive director of the TCEQ for review and approval for an extension beyond the one-year deadline for the initiation of closure. The request will include the following:

- (a) All applicable documentation necessary to demonstrate that the unit has the capacity to receive additional waste; and
- (b) All documentation necessary to demonstrate that the site operator has taken and will continue to take all steps necessary to prevent threats to human health and the environment from the MSW landfill unit.

(4) Construction of Final Cover:

The site operator will construct the permitted final cover over the waste mass utilizing methods, procedures, and specifications described in the FCQCP. The final constructed contours, elevations, and slopes of the installed final cover will match the permitted final cover contours, elevations, and slopes shown in closure drawings contained in this closure plan.

(5) Construction of Drainage Features:

The site operator will construct the drainage structures shown in drawings referenced or contained in this closure plan or in the facility surface water drainage report.

(6) Completion of Outstanding or Replacement of Damaged Groundwater or Landfill Gas Monitoring Components:

The site operator will complete installation of any outstanding or replacement of any damaged groundwater or landfill gas monitoring system components and landfill gas control systems as needed to maintain current and effective groundwater or landfill gas monitoring and control systems.

(7) Submittal of Final Cover System Evaluation Report (FCSER) to the TCEQ Executive Director:

Following completion of construction of the final cover for the subject landfill unit, the site operator will submit to the TCEQ executive director for review and acceptance, a FCSER for the unit.

Facility Name: Edinburg Regional Disposal Facility Revision No.: 0

Permit No: MSW-956C Date: July 2017, Revised:

November 2017

(8) **Completion of Closure Activities for the Landfill Unit:**

The site operator will complete closure activities for the unit within 180 days following the start of closure activities, unless the executive director of the TCEQ grants an extension as described in Item V.A.8(a) below.

Request for Extension of the Completion of Closure Activities for the Landfill Unit:

The site operator may submit a written request for an extension for the completion of closure activities to the TCEQ for review and approval. The extension request will include:

- All applicable documentation necessary to demonstrate that closure will, of necessity, take longer than 180 days; and
- All applicable documentation necessary to document that all steps have been taken and will continue to be taken to prevent threats to human health and the environment from the unclosed MSW landfill unit.

Submittal of Engineer's Certification of Closure to the TCEQ Executive (9) Director and Request of Closure Inspection to TCEQ Regional Office:

Following completion of all closure activities for the landfill unit, the site operator will submit:

Closure Inspection (a)

A written request to the local TCEQ regional office for a closure inspection of the unit.

(b) **Closure Certification**

A certification, signed by an independent licensed professional engineer, to the executive director of the TCEQ for review and approval verifying that closure has been completed in accordance with this closure plan. The site operator will submit the certification via registered mail, and the submittal will contain all applicable documentation necessary for certification of closure of the unit, including:

- A final cover system evaluation report (FCSER) documenting the installation of the final cover. The FCSER may be submitted as a separate document for review and approval following the completion of the final cover installation. In that case, the certification of closure will be submitted subsequently;
- A final contour map as described under Section III.E that includes the relevant unit; and
- Copy of the letter to the TCEQ regional office requesting a closure inspection of the relevant unit.

Facility Name: Edinburg Regional Disposal Facility Revision No.: 0
Permit No: MSW-956C Date: July 2017, Revised:

November 2017

(10) TCEQ's Acknowledgement of Termination of Operation and Closure of a Unit:

Upon receipt, the TCEQ executive director will review the closure documents for completeness and accuracy; and following receipt of the closure inspection report from the agency's regional office verifying proper closure of the MSW landfill unit according to this closure plan, the executive director will, in writing, acknowledge the termination of operation and closure of the unit and deem it properly closed. Thereafter, the site operator will comply with the post-closure care requirements described in the post-closure care plan for the unit.

(11) Deed Recordation for Disposed Regulated Asbestos Containing Materials (RACM):

Upon closure of the unit that accepted RACM, the site operator will place a specific notation that the unit accepted RACM in the deed records for the facility with a diagram identifying the RACM disposal areas. Concurrently, the site operator will submit to the TCEQ executive director, a notice of the deed recordation and a copy of the diagram identifying the asbestos disposal areas.

(12) Placement of all Closure Documentation in the Site Operating Record:

Once approved, the closure certification and all other documentation of closure will be placed in the site operating record.

(13) Closure Schedule for the Landfill Unit:

A closure schedule for Unit Closure Implementation is provided in Closure Plan Report Text. The schedule shows all the closure activities listed within Section V.A and the timelines for commencing and completing each activity. Also, the schedule shows that closure activities for the landfill unit will be completed within 180 days following the initiation of closure activities as required, unless an extension is granted by the TCEQ executive director.

(14) Other: (enter as applicable).

Facility Name: Edinburg Regional Disposal Facility Revision No.: 0
Permit No: MSW-956C Date: July 2017, Revised:

November 2017

B. Closure of the Waste Storage or Processing Units or Operations

Closure of the waste storage or processing units or operations authorized under this permit will include removal of all waste, waste residues, and any recovered materials. The facility units and operations will either be dismantled and removed off-site or decontaminated. The site operator will dispose at the landfill or evacuate all materials (including feedstock, in process, and processed) to an authorized facility and disinfect all leachate handling units, tipping areas, processing areas, and post-processing areas. If there is evidence of a release from a unit or operation, the site operator will conduct an investigation, as approved by the TCEQ executive director, into the nature and extent of the release and an assessment of measures necessary to correct an impact to groundwater.

C. Final Closure of the Facility

In addition to the closure activities listed in Section V.A above for closing a landfill unit, the site operator will conduct the following activities for the closure of the entire facility:

(1) Publish Final Closure Notice and Place the closure Plan in a Public Place:

No later than 90 days prior to the initiation of the final facility closure, the site operator will:

(a) Publication of Notice:

The site operator will publish notice in the newspaper(s) of largest circulation in the vicinity of the facility to inform the public of the final closure of the facility. This notice will include:

- The name of the facility;
- The address, and physical location of the facility;
- The facility's permit number; and
- The last date of intended receipt of waste.

(b) Place Copies of the Closure Plan in a Public Place:

The site operator will also make available an adequate number of copies of the approved final closure and post-closure plans for public access and review at the Edinburg City Hall, 415 West University Drive, Edinburg, Texas 78539 (state public place within the area, including address, where the plan will be available for public access and review).

(2) Submit Written Notice of "Intent to Close the Facility" to the TCEQ Executive Director:

The site operator will provide written notification to the TCEQ executive director of the intent to close the facility. This notice will be provided to the executive director no later than 90 days prior to the initiation of the final facility closure, and thereafter be placed in the site operating record.

Facility Name: Edinburg Regional Disposal Facility Revision No.: 0

Permit No: MSW-956C Date: July 2017, Revised:

November 2017

(3) Post Signs and Install Barriers:

Upon notifying the executive director of the intent to close the facility and no later than 90 days prior to the initiation of final facility closure, the site operator will:

(a) Post Final Closure Signs:

The site operator will post a minimum of one sign at the main entrance and all other frequently used points of access for the facility notifying all persons who may utilize the facility of the date of closing for the entire facility and the prohibition against further receipt of waste materials after the stated date.

(b) Install Barriers:

Also, the site/operator will install suitable barriers at all gates or access points to adequately prevent the unauthorized dumping of solid waste at the closed facility.

(4) Filling of "Affidavit to the Public" and Performance of the Final Deed Recording:

Upon closure of all the landfill units or upon final closure of the facility, the site operator will:

(a) File Affidavit

File with the county deed records an "Affidavit to the Public" in a form provided by the TCEQ executive director that includes an updated metes and bounds description of the extent of the disposal areas at the facility and the restrictions to future use of the land in accordance with applicable provisions under 30 TAC Chapter 330, Subchapter T.

(b) Record a Notation on the Deed

Record a certified notation on the deed to the facility property, or on some other instrument that is normally examined during title search, that will in perpetuity notify any potential purchaser of the property that the land has been used as a landfill facility and use of the land is restricted according to the provisions under 30 TAC Chapter 330, Subchapter T.

(c) Place Documents in the Operating Record

Place a copy of the "Affidavit to the Public" and a copy of the modified deed in the site operating record.

Facility Name: Edinburg Regional Disposal Facility

Permit No: MSW-956C Date: July 2017, Revised:

November 2017

(5) Submittal of a Copy of the "Affidavit to the Public" and the "Modified Deed" to the TCEQ Executive Director:

Within ten days after completion of final closure activities of the facility, the site operator will submit the following to the TCEQ executive director by registered mail:

Revision No.:

0

- (a) A certified copy of the "Affidavit to the Public";
- (b) A certified copy of the modified deed to the facility property; and
- (c) A certification, signed by an independent licensed professional engineer, verifying that final facility closure has been completed in accordance with the approved closure plan. The submittal will contain all applicable documentation necessary for certification of final facility closure, including:
 - Final Cover System Evaluation Report (FCSER) documenting the installation of the final cover. The FCSER may be submitted earlier as a separate document for review and approval following the completion of the final cover installation. In that case, the certification of closure will be submitted subsequently;
 - A final contour map as described under Item III.G above;
 - Copy of a letter to the TCEQ regional office requesting a final closure inspection of the facility; and
 - Copies of documents verifying newspaper publication of the notice of the final facility closure.

(6) Other

Additional items relating to the schedule for final facility closure, and additional closure activities specific to the final closure of this facility include:

Facility Name: Edinburg Regional Disposal Facility

Permit No: MSW-956C Date: July 2017, Revised:

Revision No.:

0

November 2017

(7) TCEQ's Acceptance of Termination of Operation and Closure of a Landfill Facility:

Following the TCEQ executive director's receipt and completion of the review of the professional engineer's certification of the completion of facility closure and the final closure documents, and receipt of the inspection report from the agency's regional office verifying proper closure of the facility according to this closure plan, the executive director will, in writing, accept the termination of operation and closure of the facility and deem it properly closed. Thereafter, the site operator will comply with the post closure care requirements described in the post closure plan for the facility.

(8) Final Closure Schedule for the Facility:

The attached Closure Plan, Final Closure Schedule, provides the closure schedule for the final facility closure. It incorporates the schedule for closure of a unit as discussed in Section V.A and also shows the commencement and completion timelines for the final closure activities listed within this Section.

VI. Summary of Attachments

A. Drawings and Maps

The following Drawings and Maps are attached as part of this plan.

- Figure III7-1, Final Contour Map.
- Figures III7-2, Cross-Section Drawings of the Landfill Units at Closure.
- Figures III7-3, Final Cover Details.
- Other Drawings/Maps: Figure III7-4 Maximum Closure Area

B. Documents

- Attachment III7A, Alternative Composite Final Cover Demonstration.
- Attachment III7B, Alternative Synthetic Grass Final Cover Demonstration.
- Attachment III7C, Form TCEQ-20720
- Attachment III7D, Final Cover Quality Control Plan (FCQCP).

C. Additional Items Attached (enter as applicable)

Facility Name: Edinburg Regional Disposal Facility

Permit No: MSW-956C

November 2017

Revision No.:

Date: July 2017, Revised:

VII. Professional Engineer's Statement, Seal, and Signature

Name: Chad E. Ireland Title: Senior Project Geological Engineer

Date: November 7, 2017

Company Name: Golder Associated Inc. Firm Registration Number: F-2578

Professional Engineer's Seal

I to July

Signature

FINAL COVER QUALITY CONTROL PLAN

CONVENTIONAL COMPOSITE AND ALTERNATIVE COMPOSITE FINAL COVER

Edinburg Regional Disposal Facility

Edinburg, Hidalgo County, Texas

TCEQ Permit MSW-956C

Submitted To: City of Edinburg

Department of Solid Waste Management

8601 North Jasman Road Edinburg, Texas 78542 USA

Submitted By: Golder Associates Inc.

500 Century Plaza Drive, Suite 190

Houston, TX 77073 USA

GOLDER ASSOCIATES INC. Professional Engineering Firm Registration Number F-2578

INTENDED FOR PERMITTING **PURPOSES ONLY**

July 2017 Project No. 1401491 Revised: November 2017

Table of Contents

1.0	Pι	JRPOSE	1
1.1	1	Purpose	1
1.2	2	Final Cover Quality Control Testing Procedures	1
2.0	FII	NAL COVER SYSTEM COMPONENTS	1
3.0	C	DHESIVE SOIL COVER (INFILTRATION LAYER)	2
3.′	1	Pre-construction Material Evaluation	2
3.2	2	Soil Cover Construction Specifications and Practices	2
	3.2.1	Working Surface Preparation	4
	3.2.2	Work Area Selection and Sizing	2
	3.2.3	Lift Placement and Processing	2
	3.2.4	Minimum Compaction Requirements	5
	3.2.5	Lift Bonding and Cohesive Soil Cover Tie-in	6
3.3	3	Construction Monitoring and Conformance Testing	6
	3.3.1	Monitoring and Observations	6
	3.3.2	Construction Testing	7
	3.3.3	Failure Repairs	8
	3.3.4	Cohesive Soil Cover Perforations	9
	3.3.5	Cover Thickness Verification	S
	3.3.6	Post-Construction Care of Cohesive Soil Cover	S
4.0	GI	EOSYNTHETIC CLAY LINER	S
4.	1	Pre-Installation Material Evaluation	S
	4.1.1	Manufacturer's Quality Control Certificates	9
	4.1.2	Conformance Testing	10
4.2	2	Installation Procedures	11
	4.2.1	GCL Subgrade Preparation	11
	4.2.2	GCL Deployment	12
	4.2.3	GCL Repairs Registration Number F-2578	13
	4.2.4	GCL ProtectionINTENDED FOR PERMITTING	13
5.0	GI	EOMEMBRANE LINER PURPOSES ONLY	13
5.	1	Pre-installation Material Evaluation	13
	5.1.1	Manufacturer's Quality Control Certificates	
	5.1.2	Conformance Testing	14
5.2	2	Installation Procedures	15
	5.2.1	Geomembrane Deployment	15
5.3	3	Installation Monitoring and Testing	16

c:\users\kcrowe\golder associates\1401491, city of edinburg permit application tceq msw 956 - documents\application\response to first nod\part iii\attachment 7\iii-7d1 fcqcp.docx
Submitted: July 2017

	5.3.1	Trial Seams	16
	5.3.2	Non-Destructive Testing	16
	5.3.3	Destructive Seam Testing	17
6.0	DR	AINAGE LAYER	18
7.0	ER	OSION LAYER	19
8.0	FIN	AL COVER SYSTEM EVALUATION REPORT	20
9.0	REI	FERENCES	22

List of Tables

Table III7D-1-1	Cohesive Soil Cover Materials Pre-construction Testing Schedule
Table III7D-1-2	Cohesive Soil Cover Construction Testing Schedule
Table III7D-1-3	GCL QC Submittal Frequency & Material Specifications
Table III7D-1-4	GCL Conformance Test Schedule
Table III7D-1-5	Geomembrane Conformance Test Schedule
Table III7D-1-6	Geocomposite Drainage Layer Specifications
Table III7D-1-7	FCSER Content

List of Figures

Figure III7D-1-2 Extrusion Weld Seam Break Classifications
Figure III7D-1-2 Fusion Weld Seam Break Classifications

List of Attachments

Attachment 1 Geosynthetic Research Institute (GRI) Test Methods

GOLDER ASSOCIATES INC. Professional Engineering Firm Registration Number F-2578

INTENDED FOR PERMITTING PURPOSES ONLY

fcqcp.docx Submitted: July 2017 Revised: November 2017

1.0 PURPOSE

1.1 Purpose

This Final Cover Quality Control Plan (FCQCP), is prepared under the direction of a licensed professional engineer, and it is the basis for the type and rate of quality control testing performance and reported in the final cover system evaluation report (FCSER) as required in 30 TAC §330.457. The plan provides operating personnel adequate procedural guidance for assuring continuous compliance with applicable rules and technical standards. The plan specifies construction methods employing good engineering practices for installation and testing of components of the conventional composite and alternative composite final cover system including infiltration layer, geosynthetic clay liner (GCL), geomembrane (GM), drainage layer, and erosion layer.

1.2 Final Cover Quality Control Testing Procedures

The liner quality control testing procedures, including sampling frequency, are provided in this FCQCP. All field sampling and testing, both during construction and after completion, shall be performed by a person acting in compliance with the provisions of the Texas Engineering Practice Act and other applicable state laws and regulations. The professional of record (POR) who signs the FCSER or his representative should be on site during all liner construction. Quality control of construction and quality assurance of sampling and testing procedures should follow the latest technical guidelines of the TCEQ.

2.0 FINAL COVER SYSTEM COMPONENTS

The final cover system options at the facility includes a conventional composite final cover system meeting the requirements of §330.457(a)(1) and an alternative composite final cover system meeting the requirements of §330.457(d). This FCQCP applies to both the conventional composite final cover system as well as an alternative composite final cover system with a GCL component for the infiltration layer. FCQCPs for other alternative final cover systems are presented separately.

The conventional composite final cover consist of (from top to bottom):

- Erosion layer consisting of 24 inches of protective soil cover, of which the uppermost 6 inches will be capable of supporting native vegetation.
- Double-sided geocomposite (geotextile/geonet/geotextile) drainage layer.
- 40-mil linear low-density polyethylene (LLDPE) textured geomembrane that has a permeability less than or equal to the permeability of the bottom liner system.
- 18-inch thick compacted clay rich earthen material with a hydraulic conductivity of 1x10⁻⁵ cm/sec or less (infiltration layer).

The alternative composite final cover will consist of (from top to bottom):

- Erosion layer consisting of 24 inches of protective soil cover, of which the uppermost 6 inches will be capable of supporting native vegetation.
- Double-sided geocomposite (geotextile/geonet/geotextile) drainage layer.
- 40-mil LLDPE textured geomembrane that has a permeability less than or equal to the permeability of the bottom liner system.
- Reinforced GCL (infiltration layer).

The construction and testing requirements for the conventional composite final cover system infiltration layer are described in §2.0, Final Cover System Components of this FCQCP. The construction and testing requirements of the GCL infiltration layer in the alternative composite final cover system is described in §3.0, Cohesive Soil Cover of this FCQCP.

3.0 COHESIVE SOIL COVER (INFILTRATION LAYER)

This section outlines generally acceptable construction practices and specifications and the minimum quality control testing requirements for cohesive soil covers, serving as the infiltration layer in the final cover system.

3.1 Pre-construction Material Evaluation

The first step in constructing a cohesive soil cover is to pre-qualify the soil materials that are selected for final cover construction. Cohesive soil cover material may be obtained from in situ soil strata that will be excavated as the final cover is constructed or from a select borrow source. Representative samples from either source shall be subject to the minimum pre-construction testing program shown in Table III7D-1-1, Cohesive Soil Cover Materials Pre-construction Testing Schedule. Each soil type shall undergo the series of tests listed in Table III7D-1-1.

Table III7D-1-1: Cohesive Soil Cover Materials Pre-construction Testing Schedule

TEST	METHOD USED	FREQUENCY ⁽¹⁾
Soil Classification	ASTM D2487	1 per soil type
Particle-Size Analysis	ASTM D422 or D1140	1 per soil type
Atterberg Limits	ASTM D4318	1 per soil type
Hydraulic Conductivity ⁽²⁾	ASTM D5084 ⁽³⁾	1 per soil type
Conventional Proctor Test	ASTM D698	1 per soil type
Moisture Content	ASTM D2216	1 per soil type

NOTES:

(1) If either the liquid limit (LL) or plastic limit (PI) varies by more than 10 points from other samples, the soil is considered a different soil type.

(2) Conduct this test on a remolded sample that is compacted at or less than 95% of the maximum dry density and at the optimum moisture content as determined from the conventional Proctor test or compacted at or less than 90% for modified Proctor test at one percent dry of the optimum. If pre-construction samples are compacted at higher

c:\users\kcrowe\golder associates\1401491, city of edinburg permit application tceq msw 956 - documents\application\response to first nod\part iii\attachment 7\iii-7d1 fcqcp.docx

or lower densities and/or respective moisture contents, then these values will govern for field control. Preconstruction tests should represent the "worst-case" condition in the field concerning hydraulic conductivity results.

(3) Testing procedures in Appendix VII of the US Army Corps of Engineers Manual EM 1110-2-1906, November 30, 1970, Laboratory Soils Testing, may be used as an alternative method. Permeability tests will be conducted using tap water or 0.05N calcium sulfate solution as the permeant fluid. Distilled or deionized water is not acceptable.

Where soil types vary substantially and are not segregated, representative blends of those soil types anticipated to be utilized for cohesive soil cover construction should also be sampled and tested. The material tested shall comply with the following minimum material specifications:

Plasticity Index ≥ 15
 Liquid Limit ≥ 30
 Percent Passing No. 200 Sieve ≥ 30
 Particle Size ≤ 1 inch

■ Hydraulic Conductivity $\leq 1 \times 10^{-5}$ cm/sec

The Proctor moisture-density curves shall be developed for each type of soil determined suitable as cohesive soil cover material and shall be used during the construction phase as a performance reference for compaction and moisture control.

The POR should consider the potential adverse effects on and/or inconsistencies of results due to laboratory drying procedures, as some materials may exhibit variation in results for Proctor and Atterberg limits tests. Samples should not be oven-dried nor dried back more than 2 to 3 percent below the lowest anticipated moisture content needed to develop the Proctor moisture-density relationship. The zero air voids line shall be computed and included along with the Proctor curves, indicating the specific gravity value used.

Pre-construction samples to be run for hydraulic conductivity testing shall be molded at or less than the optimum moisture content and at or less than 95 percent of the maximum dry density according to the conventional Proctor test (ASTM D698). These points should represent reasonable worst-case conditions for hydraulic conductivity results on appropriately compacted soils. If higher moisture contents or dry densities are used for the hydraulic conductivity tests, then the higher values will be used for field control during placement. However, if lower moisture or density values are used and confirmed to achieve acceptable hydraulic conductivities, field control will still be based on the minimum compaction requirements in §3.2.4, Minimum Compaction Requirements of this FCQCP.

A minimum of one series of pre-construction tests will be performed on each soil type and, a general rule for every 15,000 to 20,000 cubic yards (CY) of soil to be used in cohesive soil cover construction, unless soil types are limited and easily distinguished. As soil is usually made available subsequent to excavation during final cover construction, additional pre-construction samples should be taken and tests performed when soils vary or as soon as the initial pre-construction test results appear inappropriate or questionable.

If and when the same borrow source is utilized for the soil supply of more than one final cover area, and the soil type is the same, results from previous tests may be used to supplement the pre-construction data.

3.2 Soil Cover Construction Specifications and Practices

The cohesive soil cover shall be constructed in accordance with the requirements included in this section. Also, certain construction practices shall be utilized as described herein when appropriate.

3.2.1 Working Surface Preparation

Subgrade preparation prior to receiving final cover will include compacting the near surface waste or intermediate cover to prepare the working surface. Depressions in the surface where ponded water is observed will be prepared by removing the water and filling the depression with additional intermediate cover to maintain an adequate slope.

Stability of the working surface prior to placement of the final cover shall be determined by the POR by visual inspection to confirm that deflection and pumping characteristics are minimized and the strength of the surface material is adequate. The lines and grades shall be determined by survey methods prior to subsequent final cohesive soil cover construction.

The prepared subgrade shall be tied into the first cohesive soil cover lift in a manner deemed suitable by the POR such that the integrity of the first lift will be maintained.

3.2.2 Work Area Selection and Sizing

Work areas for cohesive soil cover construction should be selected, sized, and sequenced so that work on each lift can begin and be completed in the same day. The area worked at any one time should be of such size that placement, processing, and compaction will be uniform, with minimal variation caused by weather conditions. It is critical that completed lifts be tested and covered with the next loose lift before that completed lift dries out in the sun or becomes damaged by heavy precipitation. Furthermore, the selection of size and shape of work areas shall be consistent, so that uniform construction techniques and equipment can be selected. Adequate numbers of quality control personnel will be provided to suit the pace of construction so proper monitoring and documentation is performed.

3.2.3 Lift Placement and Processing

Reduction of soil clods, uniform moisture distribution, and consistent placement thickness are key elements to achieving uniform compaction of cohesive soil covers. Cohesive soil cover material shall be placed in loose lifts, generally not exceeding 8 inches after spreading and leveling and/or processing, with the expectation that the finished lift, following compaction, will be about 6 inches or less. In no case will the

loose lift thickness, after spreading and leveling, be greater than the length of the compactor feet. The intent of limiting the loose thickness is to achieve good interlift bonding and to minimize bridging or layering effects.

The loose lift of soil shall be mechanically processed, either in-place or in a separate processing area, to break down the original soil structure and to reduce clod size. Additional processing, if necessary, will be used to blend variable soil types within the loose lift and incorporate additional water. The goal of processing is to yield a relatively uniform mass of soil that is devoid of original structure that may contribute to excess hydraulic conductivity. Processing may be achieved by discing, grading, compacting, or pulverizing. Pneumatic-tired or tracked equipment will not generally be acceptable to provide processing action, although this equipment may be used to pull the other acceptable implements.

Moisture adjustment may be required, particularly during dry seasons, and reasonable practices shall be used to distribute added water uniformly within the lift. Care shall be taken to prevent over-watering and ponding of water within the loose lift, as this excess water is difficult to redistribute. Drying back of overly wet soils during processing can result in clods having dry, crusting surfaces, which may not bond together adequately. If such drying is allowed, then additional effort will be necessary to assure even moisture distribution and hydration. Hydration times shall be evaluated and determined if acceptable by the POR.

3.2.4 Minimum Compaction Requirements

Processed loose lifts shall be leveled prior to compaction to provide uniform compaction effort over the lift. Each lift shall be compacted to the moisture and density requirements established for the project and as set forth in the provisions of this FCQCP. Lifts shall be compacted to at least 95 percent of the maximum dry density with a corresponding moisture content at or up to 5 percent above optimum determined by conventional Proctor test results (ASTM D698) conducted on similar representative material. The above criteria shall be utilized, unless pre-construction hydraulic conductivity tests were performed at higher or lower densities or moisture contents, in which case these density and moisture values will be used as field compaction minimums. The soil liner density must be expressed as a percentage of the maximum dry density and at the corresponding optimum moisture content as discussed in this section.

In the event that subsequent laboratory testing of samples from an area of constructed cohesive soil cover indicate an alternate moisture density curve is appropriate for the soil type, the CQA monitor will switch to the appropriate curve as necessary. It is recognized that laboratory test results become available often several days after construction of an area of cohesive soil cover. If the laboratory testing data indicates that the area constructed using the incorrect moisture-density curve meets the permeability requirements (i.e., less than or equal to 1 x 10⁻⁵ cm/sec), the area will be considered acceptable as cohesive soil cover.

Revised: November 2017

Cohesive soil covers shall not be compacted with a bulldozer or any track-mobilized equipment unless it is used to pull a footed roller; however, this practice is not encouraged. All cohesive soil covers shall be compacted with a pad-footed or prong-footed roller only. Bulldozers, pneumatic rollers or scrapers, and flat-wheeled rollers will not be permitted for compaction.

Construction survey control should be conducted routinely during lift placement to verify that loose and finished lifts are of the proper thickness to ensure uniform compaction.

3.2.5 Lift Bonding and Cohesive Soil Cover Tie-in

Interlift bonding shall be accomplished prior to placing the subsequent loose lift. Compactors shall be of sufficient weight and foot length to penetrate the current lift when loose and provide bonding to the previous lift.

When lifts of the cohesive soil cover are not constructed continuously, a vertical construction joint may occur. To remove the vertical construction joint(s), the edge of the adjoining section shall be cut back or flattened to permit offsetting of the tie-in for subsequent lifts. For each 6-inch lift, the edge should be cut back at least 2.5 feet or graded to a maximum slope of 5H:1V, and then the corresponding adjoining lift should be placed against the existing finished lift. The new loose lift and at least 2 feet of the adjoining existing lift will be processed together, and then recompacted, so that the existing cohesive soil cover edge is tied to new construction without superimposed vertical construction joints. This tie-in procedure shall be repeated lift-by-lift until all corresponding adjacent lifts are constructed to the required elevation. The cut back edge of the existing cohesive soil cover may be done all at once or one lift at a time.

3.3 Construction Monitoring and Conformance Testing

Quality assurance of recompacted cohesive soil covers shall consist of monitoring the work as cohesive soil cover construction proceeds and laboratory and field testing to assure that material conformance and construction performance specifications are achieved.

3.3.1 Monitoring and Observations

Full-time quality assurance monitoring and testing will be performed during the course of cohesive soil cover construction. The work will be performed by a POR described in §1.2, Final Cover Quality Control Testing Procedures of this FCQCP or by a CQA monitor working under the general supervision of the POR. The CQA monitor will be on-site at all times when cover construction is ongoing, so that all relevant activities can be observed and documented. The POR will visit the site periodically as construction progress warrants. Such visits will be frequent enough so that the POR is fully knowledgeable of the construction methods and performance, so that the POR can determine that quality control monitoring and testing activities are adequate to meet the terms and intent of this FCQCP.

Visual observation shall include, but not be limited to, the following:

- Moisture content and distribution, particle size, and other physical properties of the soil during processing, placement, and compaction.
- Type and level of compaction effort, including roller type and weight, drum size, foot length and face area, and number of passes.
- Action of compaction equipment on soil surface (i.e., foot penetration, rolling, pumping, or shearing).
- Maximum clod size and breakdown of soil structure.
- Method of bonding lifts together and making cohesive soil cover tie-ins.
- Stones or other inclusions, which may damage overlying geosynthetic components or adversely affect compaction, lift bonding, and in-place testing/sampling.
- Areas where damage due to excess moisture, insufficient moisture, or freezing may have occurred.

3.3.2 Construction Testing

30 TAC §330.457(c)

During cohesive soil cover construction, the minimum testing and sampling program presented in Table III7D-1-2, Cohesive Soil Cover Construction Testing Schedule shall be conducted to determine that adequate compaction and material conformance are being achieved.

Table III7D-1-2: Cohesive Soil Cover Construction Testing Schedule

TEST	METHOD	MINIMUM FREQUENCY(2)(3)
Field Moisture/Density Test	ASTM D6938, D2937, or D1556	1 per 8,000 ft ² , per 6-inch lift
Percent Finer Than No. 200 Sieve	ASTM D1140 or D422	1 per 100,000 ft ² , per 6-inch lift
Atterberg Limits	ASTM D4318	1 per 100,000 ft ² , per 6-inch lift
Hydraulic Conductivity ⁽¹⁾	ASTM D5084	1 per acre (evenly distributed through all lifts), per 6-inch lift

NOTES:

- (1) Testing shall be conducted on undisturbed samples. Testing procedures in Appendix VII of the US Army Corps of Engineers Manual EM 1110-2-1906, November 30, 1970, Laboratory Soils Testing, may be used as an alternative.
- (2) A voluntary increase in the number of any tests performed does not in turn require a commensurate increase in the other testing requirements to meet the above program.
- (3) A minimum of one of each of the designated tests must be conducted for each lift of cohesive soil cover regardless of surface area.

Typically, field moisture-density tests will be performed using a nuclear density gage (ASTM D6938). Other acceptable test methods include the Sand Cone Method (ASTM D1556) or Drive Cylinder Test (ASTM D2937). Questions concerning the accuracy of any single field moisture-density test shall be addressed by retesting in the same general location. Periodic checks using the various test methods may be performed

to verify the field moisture-density test results. Alternatively, field moisture-density checks may be performed using laboratory measurements of tube samples obtained adjacent to the field test locations.

Hydraulic conductivity tests will be performed on samples obtained with a thin-walled tube sampler. The percent finer than No. 200 sieve and Atterberg limits will be performed on the thin-walled tube sample or on a grab sample obtained adjacent to the thin-walled tube. These construction test samples will be obtained from the recently completed lift, taken one lift at a time, so that sample penetrations only go through one lift and do not penetrate from one lift into the next. Hydraulic conductivity samples will be sent to the geotechnical laboratory in the sampling tube, which will be properly sealed to preserve the moisture content and integrity of the sample.

3.3.3 Failure Repairs

3.3.3.1 Field Density Testing

Sections of cohesive soil cover that do not pass either the density or moisture requirements in the field shall be reworked and retested until the section in question does pass. All field density results shall be reported in the Final Cover System Evaluation Report (FCSER), whether they indicate passing or failing values.

In the event of a failed moisture-density test, additional tests will be performed between the failed test and the nearest adjacent passing test locations. If those additional tests pass, then the area between the failed test and the additional passing tests will be reworked and retested until passing. If the additional tests fail, then additional tests will be performed halfway between the initial additional tests and the adjacent passing tests to further define the failing area. This procedure will be repeated until the failing area is defined, reworked, and retested with passing results.

3.3.3.2 Laboratory Testing

Sections of cohesive soil cover that do not pass hydraulic conductivity testing shall be reworked and retested until the section in question does pass. All hydraulic conductivity testing results shall be reported in the Final Cover System Evaluation Report (FCSER), whether they indicate passing or failing values.

In the event of a failed hydraulic conductivity test, additional tests will be performed between the failed test and the nearest adjacent passing test locations. If those additional tests pass, then the area between the failed test and the additional passing tests will be reworked and retested until passing. If the additional tests fail, then additional tests will be performed halfway between the initial additional tests and the adjacent passing tests to further define the failing area. This procedure will be repeated until the failing area is defined, reworked, and retested with passing results.

3.3.4 Cohesive Soil Cover Perforations

When taking field densities and undisturbed samples, all holes dug or created in the cohesive soil cover for density probes or samples must be backfilled with bentonite or a bentonite-rich soil material. This backfill will be tamped in the hole to remove pockets of air or loose soil, and to assure a tight compact seal.

3.3.5 Cover Thickness Verification

Cohesive soil cover thickness verification shall be determined by survey methods. The verification points for record purposes shall be on a grid not exceeding 10,000 square feet per grid. If the area under evaluation is less than 10,000 square feet, a minimum of two grid points is required for verification. The selected grid shall be the same for both beginning and finished elevations of the cohesive soil cover, so that minimum thicknesses can be calculated and verified.

3.3.6 Post-Construction Care of Cohesive Soil Cover

The integrity of the cohesive soil cover shall be maintained by moistening to prevent the material from desiccating. Conversely, the cohesive soil cover shall be kept free of standing water. Damage caused by rain shall be repaired, and if the lift must be reworked, as determined by the POR, then appropriate retesting (including field moisture-density and permeability tests) shall be performed.

4.0 GEOSYNTHETIC CLAY LINER

This section presents general procedures, quality control testing requirements, and installation procedures for the geosynthetic clay liner (GCL) used in the alternative composite final cover to replace the cohesive soil (infiltration) layer. The GCL approved for use at the site consists of sodium bentonite encapsulated between two geotextile layers, needle-punched or stitched-bonded together.

4.1 Pre-Installation Material Evaluation

4.1.1 Manufacturer's Quality Control Certificates

Prior to the installation of the GCL, the manufacturer or installer shall provide the POR with quality control certificates signed by a responsible party employed by the manufacturer. The manufacturer must provide documentation certifying the material was continuously inspected for broken needles, and is needle free. Each quality control certificate shall include roll identification numbers, testing procedures, and results of quality control tests. The quality control tests shall be performed in accordance with project-specific testing methods and subject to the minimum testing frequency shown in Table III7D-1-3, GCL OC Submittal Frequency & Material Specifications. The owner may require more frequent testing at his discretion.

The quality control testing may be performed in the manufacturing plant. The POR shall review the test results prior to accepting the GCL to ensure that the certified minimum properties meet the values presented in Table III7D-1-3, GCL OC Submittal Frequency & Material Specifications.

4.1.2 Conformance Testing

In addition to the manufacturer's quality control certificates, samples of rolls of GCL will be obtained for conformance testing. The samples shall be tested by an independent third party laboratory in accordance with Table III7D-1-4, GCL Conformance Test Schedule. The POR shall review the test results to ensure that they meet the values presented in Table III7D-1-3, GCL QC Submittal Frequency & Material Specifications.

The POR shall compare measured shear strength values to those used in the stability analyses included in Part III3B-2E, Final Cover System Stability. If the measured interface shear strength is less than the values used in the analyses, the stability of the final cover system shall be reassessed and revised calculations shall be included in the Final Cover System Evaluation Report (FCSER).

4.1.3 Shipping and Unloading

In order to prevent premature hydration, the GCL rolls shall be shipped in plastic wrapping that shall remain intact until material installation. Rolls shall be labeled with the manufacturers name, product identification, roll and lot number, roll dimensions, weight and any other information to trace the quality assurance documentation. Upon delivery of the GCL, storage and handling procedures shall be documented. The rolls will be stacked, stored above ground, covered, and handled in accordance with ASTM D5888 or manufacturer's recommendations. If any rolls is damaged during shipping, unloading or storage or if the outer portion becomes partially hydrated, the damaged portion shall be removed before the roll is deployed.

Table III7D-1-3: GCL QC Submittal Frequency & Material Specifications

Bentonite					
Property	Qualifier	Unit	Value	Test Method ⁽¹⁾	Frequency
Fluid Loss	max.	ml	18	ASTM D5891	1 per 50 tons or
Free Swell	min.	ml	24	ASTM D5890	every truck or railcar
Geotextile					
Property	Qualifier	Unit	Value	Test Method ⁽¹⁾	Frequency
Mass per Unit Area	_	g/cc	_	ASTM D5261	
Tensile Properties:	_	lb	_	ASTM D4632	1 per 200,000 ft ²
GCL Product					
Property	Qualifier	Unit	Value	Test Method ⁽¹⁾	Frequency
Bentonite Mass	min.	lb/ft ²	0.8	ASTM D5993	1 per 40,000 ft ²

c:\users\kcrowe\golder associates\1401491, city of edinburg permit application tceq msw 956 - documents\application\response to first nod\part iii\attachment 7\iii-7d1

fcqcp.docx

Bentonite Moisture Content	_	%	_	ASTM D5993	
Grab Tensile Strength	_	lb	_	ASTM D6768	1 per 200,000 ft ²
Hydraulic Flux	max.	m ³ /m ² -s	1 x 10 ⁻⁸	ASTM D5887	1 per week for each production line ⁽²⁾
Lap Joint Permeability	Max	cm/sec	1 x 10-8	Flow Box or other suitable device	1 per material and lap type

Notes:

- 1. Updated methods may be implemented based on a review by the POR.
- 2. Report last 20 test values, ending on production date of supplied GCL.
- 3. For those properties that do not indicate a value, the GCL material must meet the manufacturer's minimum specification.

Table III7D-1-4: GCL Conformance Test Schedule

TEST	METHOD ⁽¹⁾	FREQUENCY
Bentonite Mass/Unit Area	ASTM D5993	Not less than 1 test per 100,000
Hydraulic Flux	ASTM D5887	ft ²
Direct Shear	ASTM D6243	1 test per GM/adjoining materials

Notes:

Updated methods may be implemented based on a review by the POR.

4.2 **Installation Procedures**

4.2.1 GCL Subgrade Preparation

Surfaces to be lined should be smooth and free of all rocks greater than 0.75-inch diameter (or as recommended by the manufacturer, if less than 0.75 inches), sharp/angular objects, sticks, roots, or debris of any kind. The surface should provide a firm, unyielding foundation for the GCL with no sudden, sharp, or abrupt changes or break in grade. The subgrade surface shall be prepared by rolling with a smooth-drum roller to minimize the roughness and press down protruding soil or rock particles prior to GCL deployment. Loose rocks and/or dry soil particles that could damage the GCL shall be removed. Excessive voids or dimples shall be filled with soil.

The GCL subgrade should be moisture conditioned prior to placing the GCL in final covers. Research has shown that the subgrades with water contents above 10%, or greater than the optimum water content, promotes hydration and osmotic swell in GCLs. These conditions result in GCLs that maintain their low hydraulic conductivities regardless of the amount cation exchange that occurs (Scalia and Benson 2011).

Although the subgrade shall be moist, standing water will not be allowed.

Revised: November 2017

4.2.2 GCL Deployment

Equipment used to deploy GCL must not cause excessive rutting of the subgrade. Deployed GCL panels should contain no folds or excessive slack. Installation personnel must not smoke or wear damaging shoes on GCL. GCL should not be placed during excessive winds. Sand bags should be used to anchor deployed GCL when necessary. In general, only low ground pressure rubber-tired support equipment approved by the POR may be allowed on the GCL. If the POR or CQA monitor observes any potential damage done to the liner by the support equipment, use of the equipment will cease and the damage will be repaired. Generators, gasoline or solvent cans, tools, or supplies must not be stored directly on the GCL. GCL must be rolled into position, not drug across the subgrade. Deployed GCL must not be used as a work area without adequate protection such as a rub sheet.

Panels should be overlapped and seamed, as recommended by the manufacturer. End-to-end seams on sideslopes are not allowed. Care must be taken to assure the GCL is installed with the proper side up.

GCL deployment shall be limited to the amount that can be covered with the overlying geomembrane liner the same day. GCL deployment shall not be undertaken during precipitation or when there is an impending threat of precipitation. GCL deployed on 5H:IV or steeper slopes shall be rolled down the slopes, not cross slope.

Following deployment, the CQA monitor shall visually examine the entire surface of the GCL for even bentonite distribution, thin spots, or other panel defects. All defects will be recorded and repaired in accordance with this FCQCP. The QA/QC representative shall also verify the following:

- Adequately moist subgrade
- Proper overlap during deployment
- Seams between GCL panels are constructed per manufacturer's recommendations
- Defects are patched and overlapped properly
- The bentonite has not become excessively hydrated
- No stones, tools, cutting blades or other objects that could damage the GCL are present on the GCL.

Excessively hydrated GCL shall be removed and replaced. Geomembrane shall not be placed on excessively hydrated GCL.

GCL panels shall be given an identification code, mapped, and logged to record relevant installation information.

4.2.3 GCL Repairs

Torn or otherwise damaged geosynthetic facing must be patched with the same type of geosynthetic. The geosynthetic patch must extend at least 12 inches beyond the damaged area and must be heat bonded, or otherwise attached to the main GCL to avoid shifting during placement of overlying geosynthetics. If the GCL damage includes loss of bentonite, the patch must consist of full GCL extending at least 12 inches beyond the damaged area. Lapping procedures must be the same as specified for original laps of GCL panels.

4.2.4 GCL Protection

The overlying geosynthetics and soil layers shall be deployed in such a manner as to ensure that the GCL is not damaged. Textured geomembranes shall not be dragged across previously installed GCL. A smooth rubsheet shall be placed between the GCL and textured geomembrane to prevent damage. The rubsheet will be removed when the geomembrane is in position. Other methods may be employed at the POR's discretion.

To avoid local bentonite displacement, and the possible impact on the hydraulic performance of a GCL, the soil cover material should be placed over the geomembrane and geocomposite overlying the GCL as soon as practicable following completion of the geomembrane and drainage system construction.

5.0 GEOMEMBRANE LINER

This section presents general procedures, quality control testing requirements, and construction specifications for geomembrane liner construction. Both the conventional composite final cover system and the alternative composite final cover system will include the following components:

- 40-mil, textured LLDPE geomembrane;
- A geocomposite drainage layer composed of a geonet and filter geotextiles heat-bonded to both sides; and
- 18-inch protective cover soil. The upper 6 inches is an erosion control layer and must be capable of sustaining native plant growth.

5.1 Pre-installation Material Evaluation

5.1.1 Manufacturer's Quality Control Certificates

Prior to installing any geomembrane, the manufacturer or installer shall provide the POR with quality control certificates signed by a responsible party employed by the manufacturer. Each quality control certificate shall include roll identification numbers, testing procedures, and results of quality control tests. The quality control tests shall be performed in the manufacturing plant using the test methods and frequencies listed in the most recent version of the Geosynthetic Research Institute (GRI) test method GM17, "Test Methods,

Test Properties and Testing Frequency for Linear Low Density Polyethylene (LLDPE) Smooth and Textured Geomembranes," included in Attachment 1. The owner may require more frequent testing at his/her discretion.

The POR shall review the test results prior to accepting the geomembrane to assure that the certified minimum properties meet the minimum values for geomembranes, as determined by the most recent GRI test method GM17.

The rolls delivered to the site shall be inventoried, recording the manufacturer's name and product identification, and the roll thickness, number and dimensions. Manufacturer's certificates should be cross-referenced to rolls delivered on-site.

Resumes of the installer's supervisor(s) or Master Seamer(s) shall be obtained to verify that adequate seaming experience will be utilized on the project. The installer's supervisor or Master Seamer shall have had experience totaling a minimum of 2,000,000 square feet of geomembrane installation.

Upon delivery of geosynthetic materials, storage and handling procedures shall also be documented. Rolls of geosynthetic materials shall be handled and stored in such a way as not to damage the material. As a general rule, rolls of geosynthetic materials should not be stacked more than four rolls high.

5.1.2 Conformance Testing

In addition to the manufacturer's quality control certificates, samples of the delivered rolls of geomembrane will be obtained either at the manufacturing facility or upon delivery to the site for conformance testing. The test samples shall be conformance tested by a third party laboratory in accordance with the testing schedule shown in Table III7D-1-5, Geomembrane Conformance Test Schedule.

Table III7D-1-5: Geomembrane Conformance Test Schedule

TEST	METHOD ⁽¹⁾	FREQUENCY
Thickness (laboratory measurement)	ASTM D5994 (Textured)	
Density	ASTM D1505 or D792	Not less than 1 test per 100,000
Carbon black content ⁽⁵⁾	ASTM D4218	ft ² with not less than 1 per resin lot
Carbon black dispersion	ASTM D5596	Ю
Tensile properties	ASTM D6693, Type IV	
Direct Shear ⁽²⁾⁽³⁾⁽⁴⁾	ASTM D6243	1 test per GM/adjoining materials

Notes:

1. Updated ASTM or GRI methods may be implemented based on a review by the POR.

2. Direct shear testing shall be performed on the soil or GCL/geomembrane/geocomposite sandwich. Soak interface and apply normal stresses of 100, 200 and 400 psf for at least 1 hour prior to shearing at a displacement rate of 0.04 in/min.

c:\users\kcrowe\golder associates\1401491, city of edinburg permit application tceq msw 956 - documents\application\response to first nod\part iii\attachment 7\iii-7d1

fcqcp.docx

- 3. The testing results shall be compared to the values used in the final cover system stability analyses included in the Appendix III3B-2E. If the measured interface shear strength is less than the values used in the analyses, the stability of the final cover system shall be reassessed and revised calculations shall be included in the FCSER.
- 4. Test results from materials used during one construction event may be used in subsequent events provided the materials used are the same and approved by the POR.
- 5. Other methods such as D1603 (tube furnace) or D6370 (TGA) are acceptable if an appropriate correlation to D4218 (muffle furnace) can be established.

5.2 Installation Procedures

5.2.1 Geomembrane Deployment

The geomembrane shall be installed in direct and uniform contact with the cohesive soil coder or GCL. The geomembrane shall not be placed during inclement weather such as high winds or rain.

Geomembrane seaming should generally not take place when ambient temperatures are below 32 degrees Fahrenheit (°F), unless preheating is used. For extrusion welding, preheating will be required if the temperature is below 32°F. For fusion welding, preheating may be waived if the installer demonstrates that quality welds may be obtained without preheating. Seaming shall not be permitted at ambient temperatures above 104°F, unless the installer can demonstrate that seam quality is not compromised.

In general, only low ground pressure rubber-tired support equipment approved by the POR may be allowed on the geomembrane. If the POR observes any potential damage done to the liner by the support equipment, use of the equipment will cease and the damage will be repaired. Personnel working on the geomembrane shall not smoke, wear damaging shoes, or engage in any other activity likely to damage the geomembrane. Only those sections that are to be placed and seamed in one day should be unrolled. Panels left unseamed should be anchored with sandbags or other suitable weights. In general, seams should be oriented parallel to the line of maximum slope (i.e., oriented up and down, not across the slope). In corners and odd-shaped geometric locations, the number of field seams should be minimized.

Panels should be overlapped as recommended by the manufacturer as appropriate for the type of seam welding to be performed; however, overlapping shall be no less than 2 inches. Field seaming shall only be performed by the method(s) approved by the manufacturer, either by extrusion welding or double-tracked fusion welding. No seaming shall take place without the installer's supervisor or Master Seamer and CQA monitor being present. Fishmouths or wrinkles at the seam overlap shall be cut along the ridge of the wrinkle to achieve a flat overlap. The cut shall be seamed and/or patched. Seams shall extend to the outside edge of panels placed in the anchor trench.

Panel layout and field seams shall be given an identification code, mapped, and logged to record relevant installation information. Inspection and testing records shall be logged as well as repair and retest data. Section 5.0 includes a list of items to be documented during geomembrane construction and testing.

5.3 Installation Monitoring and Testing

5.3.1 Trial Seams

Each day prior to commencing field seaming, trial seams shall be made on pieces of geomembrane material to verify that conditions are adequate for production seaming. Trial seams shall be made at the beginning of each seaming period and shift (generally, at least twice each day) for each combination of production seaming machine and operator to be used that day. The trial test seam shall be at least 3 feet long by 1 foot wide (after seaming) with the seam centered lengthwise. Four 1-inch wide specimens shall be die-cut from the trial seam sample. Two specimens shall be tested in the field for shear and two for peel (test both inner and outer welds for dual track fusion welding) and shall be compared to the minimum seam strength requirements specified in the most current version of the Geosynthetic Institute, GRI Test Method GM19. The current versions of the GRI test methods are included in Attachment 1.

If any of the trial seam specimens fail, the entire trial seam operation shall be repeated. If an additional specimen fails during the second trial seam, the seaming machine and seamer shall not be used for seaming until the deficiencies are corrected and two consecutive successful trial seams are achieved. Additional trial seams shall be made at each occurrence of significantly different environmental conditions, including, but not limited to, temperature, humidity, and dust, and after any machine is turned off for more than 30 minutes.

5.3.2 Non-Destructive Testing

Continuous, non-destructive testing shall be performed on all seams by the installer. All leaks must be isolated and repaired by following the procedures described in this FCQCP.

<u>Air Pressure Testing – ASTM D5820.</u> The ends of the air channel of the dual-track fusion weld must be sealed and pressured to approximately 30 pounds per square inch (psi), if possible. The air pump must then be shut off and the air pressure observed after 2 minutes. A loss of less than 4 psi is acceptable if it is determined that the air channel is not blocked between the sealed ends. A loss greater or equal to 4 psi indicates the presence of a seam leak that must then be isolated and repaired by following the procedures described in this FCQCP. The POR or his/her qualified representative must observe and record all pressure gauge readings.

<u>Vacuum-Box Testing – ASTM D5641.</u> Apply a vacuum of approximately 4 to 8 psi to all extrusion welded seams that can be tested in this manner. The seam must be observed for leaks for at least 10 seconds while subjected to this vacuum. The POR or his/her qualified representative must observe 100 percent of this testing.

Other Testing. Other non-destructive testing must have prior written approval from the TCEQ.

Revised: November 2017

5.3.3 Destructive Seam Testing

Destructive samples shall be taken at a minimum frequency of one test location, selected randomly, within each 500 linear feet of seam length, inclusive of both primary longitudinal and cross seams, cap strips, and repairs 20 square feet in total area or larger. Each test sample should be of sufficient length and 12 inches wide with the seam located in the middle. Test specimens, approximately 1 inch wide, shall be cut from both ends of the sample for field testing (peel and shear). The remaining sample should be cut into three parts (one for quality assurance laboratory testing, one for installer quality control laboratory testing, and one for archive storage to be maintained at a location selected by the owner).

The field tests shall be conducted on a certified calibrated tensiometer capable of maintaining a constant extension rate of 2 inches per minute. If one of the field test specimens from the ends of the destructive sample fails, then the seam will be considered to have failed, and repairs shall be initiated, as described below. If both specimens pass, then a sample for laboratory testing will be sent to the quality assurance laboratory for testing in both peel and shear. Seam strengths for LLDPE geomembranes shall meet the minimum values specified in the most current version of the Geosynthetic Institute, GRI Test Method GM19, "Seam Strength and Related Properties of Thermally Bonded Polyolefin Geomembranes."

Destructive test results for both field and laboratory tests shall include qualitative data, including the location of the failure and locus-of-break code as described in ASTM D6392. Peel tests on double-tracked fusion welds shall be performed on both inside and outside tracks of the weld. Seam break classifications for extrusion and fusion welds are shown on Figures III7A-1 and III7A-2, respectively.

At a minimum, a destructive test must be done for each welding machine used for seaming or repairs. A sufficient amount of the seam must be removed to conduct field testing, independent laboratory testing, and archiving of enough material to retest the seam when necessary. Destructive seam testing locations shall be cap-stripped and the cap completely seamed by extrusion welding to the geomembrane. Capped sections shall be non-destructively tested. Additional destructive test samples may be taken if deemed necessary by the POR or his/her qualified representative.

<u>Weld Acceptance Criteria</u>: For LLDPE seams, the minimum passing criteria for destructive seam testing are described in the Geosynthetic Institute, GRI Test Method GM19. The POR must use the most current version of GM19 when evaluating welded seams.

<u>Seam Failure Delineation</u>: When a sample fails a destructive test, the installer shall trace the welding path to an intermediate location at least 10 feet in each direction, or a distance determined by the POR, from the point of the failed test in each direction and take 1-inch wide specimens for an additional set of field tests. If these additional samples pass the tests, then two laboratory destructive samples shall be taken adjacent to the intermediate locations or at locations determined by the POR or his/her representative. If these laboratory samples pass the tests, then the seam shall be repaired between these locations. If either sample fails, then the process shall be repeated to establish a zone where the seam should be repaired. All

acceptable repaired seams shall be bounded by two locations from which samples passing laboratory destructive tests have been taken.

<u>Seam Failure Repairs</u>: Any portion of the geomembrane exhibiting a flaw or failing a destructive or non-destructive test shall be repaired. Repair methods may include spot welding (extrusion) for minor flaws and punctures; patches for larger holes and tears; capping for large lengths of failed seams or panel damage; and extrusion welding of outer flap to repair of an inadequate fusion seam (less than 100-foot cumulative length) that has an exposed edge.

For any repair method, the following provision shall be satisfied:

- Surfaces of the geomembrane that are to be repaired using extrusion methods shall be ground no more than one hour prior to the repair;
- All surfaces shall be clean and dry at the time of repair;
- Patches or caps shall extend at least 6 inches beyond the edge of the defect, and all corners of patches shall be rounded with a radius of approximately 3 inches;
- All repairs shall be non-destructively tested, as previously described; and
- All seaming equipment, personnel, and operation procedures used in repair work shall meet the same requirements as for new seaming operations.

The POR or his/her qualified representative shall observe all non-destructive testing of repairs and shall record the number of each repair, type, date, and test outcome. Repairs that pass the non-destructive tests shall be taken as an indication of an adequate repair. Repairs more than 150 feet long shall also be required to have a destructive test performed. Repairs that fail the initial retest shall be redone and retested until a passing test results. All work and testing of repairs shall be fully documented in a repair log.

When placing overlying material on the geomembrane, effort must be made to minimize wrinkle development. If possible, cover should be placed during the coolest weather available. Small wrinkles should be isolated and covered as quickly as possible to prevent their growth. In no case shall the geomembrane be allowed to fold over on itself.

6.0 DRAINAGE LAYER

The geocomposite drainage layer shall conform to the material and performance properties specified in Table III7D-1-6, Geocomposite Drainage Layer Specifications. Manufacturers' certificates of material and performance characteristics shall be obtained and documented at the minimum frequency shown on Table III7D-1-6, Geocomposite Drainage Layer Specifications, with not less than 1 per resin lot. Geosynthetic drainage material conformance testing will consist of transmissivity testing on each material type using the test set-up described in Table III7D-1-6, Geocomposite Drainage Layer Specifications.

The drainage layer is a double-sided geocomposite that consists of a geonet with a non-woven geotextile heat-bonded on both sides deployed over the final cover area. The double-sided geocomposite shall be anchored in an anchor trench at the perimeter of the final cover area or as shown on Figures III7-2A and

III7-2B. The geonet core of the geocomposite will be tied together using plastic ties placed at a frequency of one per 5 feet along the length of the panel and every 6 inches along the ends of the panels. The upper geotextile panels will be secured by either overlapping and heat bonding or field sewn.

Only low ground pressure rubber-tired support equipment approved by the POR may be allowed on the geotextile. Personnel working on the geotextile shall not smoke, wear damaging shoes, or engage in any activity that damages the geotextile or underlying geosynthetics.

Table III7D-1-6: Geocomposite Drainage Layer Specifications

Test Category	Product	Test ^a	Test Method ^b	Testing Frequency
Manufacturer	Resin (Geonet)		ASTM D792 or	One test per
		Density	D1505	100,000 ft ² and
		Melt Flow Index	ASTM D1238	every resin lot
Manufacturer	Geonet		ASTM D792 or	
		Density	D1505	One test per
		Nass / Area	ASTM D5261	One test per 100,000 ft ² and
		Thickness	ASTM D5199	every resin lot
		Compression	ASTM D1621	every result for
		Transmissivity	ASTM D4716	
Manufacturer	Geotextile	Mass/Area	ASTM D5261	
		Grab Tensile		
		Strength	AASTM D4632	
		Trapezoidal Tear		
		Strength	ASTM D4533	One test per
		Burst Strength	ASTM D3786	100,000 ft² and
		Puncture Strength	ASTM D4833	every resin lot
		Thickness	ASTM D5199	
		Apparent Opening		
		Size	ASTM D4751	
		Permittivity	ASTM D4491	
Independent	Geocomposite	·		One test per
Laboratory	Product	Transmissivity	ASTM D4716	product type
		Interface Shear or	ASTM D5321 OR	One test per
		Ply Adhesion	D413	project

^a Adapted from EPA/600/R-93/182, September 1993, and *Designing with Geosynthetics*, 6th ed.

7.0 EROSION LAYER

The soil cover layer will consist of an 24-inch thick single protective/erosion layer. See Section 2.0 of this plan for a detailed description of the final cover system.

Revised: November 2017

^b The POR may propose equivalent or better tests.

Soil cover does not require compaction control; however, it should be stable for construction traffic. Care shall be exercised in placement so as not to shift, wrinkle, or damage any underlying geosynthetic layers, and the placement methods shall be documented. Soil cover placement shall be monitored by the POR or his/her representative on a full-time basis.

Only the geocomposite should be placed in direct contact with the geomembrane. Light equipment, such as low ground pressure dozers (less than 5 psi contact pressure), shall be used to place the soil cover and a minimum of 12-inches of material shall be maintained between the dozer and the underlying geosynthetics. If possible, cover should be placed during the coolest weather available. Soil cover material shall be deployed in "fingers" along the geosynthetics to control the amount of slack and minimize wrinkles and prevent folds. Soil cover shall generally be placed in an upslope direction on sideslopes.

The final thickness of the soil cover layer shall be a minimum of 24-inches directly above the geocomposite drainage layer. The required thickness of the layer shall be verified by survey techniques on an established grid system with not less than one verification point per 10,000 square feet of surface area. A minimum of two verification points is required.

The soil used as the soil cover layer will be capable of sustaining native plant growth and must be seeded or sodded immediately after completion of the final cover (weather permitting). Temporary or permanent erosion control materials (i.e., mulches, containment meshes, geomatting systems, etc.) may be used to minimize erosion and aid establishment of vegetation. An alternative erosion layer may also be constructed (subject to the approval of TCEQ) consisting of cobbles, riprap, or other hard armor systems for areas where establishing vegetative cover has proven difficult.

Other quality assurance for the soil cover layer should consist of continuous observation by the POR or his/her representative during construction; inspection of any manufacturer's or supplier's material test data and certification; and performing any additional test believed necessary by the POR to verify that the layer has been constructed in accordance with the closure plan.

8.0 FINAL COVER SYSTEM EVALUATION REPORT

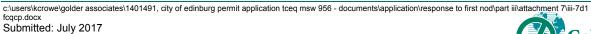
Upon completion of all required final cover construction and evaluation, the POR shall prepare and submit in triplicate the FCSER, prepared in accordance with this plan, to the TCEQ for review and approval.

Each FCSER will include a discussion of the construction of the final cover elements and a cover placement map, which not only shows the covered area being submitted for approval, but also the areas covered by all previous FCSER submittals with the dates of acceptance by the TCEQ. The map should depict the site grid system, graphic scale, and north arrow. It may be a print from a master drawing that is annotated and

updated with each new submittal. The FCSER shall be signed and/or sealed by the POR performing the evaluation and counter-signed by the site operator or his/her authorized representative.

The construction documentation will contain a narrative describing the conduct of work and testing programs required by the FCQCP, "as-built" or record drawings, and appendices of field and laboratory testing. Constructed cover details ("as-builts"), where applicable, will be depicted and will show slopes, widths, and thickness for compaction lifts as determined from the field documentation. The construction documentation report will contain or discuss the following information at a minimum.

Table III3D-1-7: FCSER Content


	Pre-construction soil test results
	Summary of construction material conformance tests results
	Summary of field moisture-density control test methods and results
	Summary of hydraulic conductivity test results
	Cohesive soil cover construction practices
	Placement and processing methods
Cohesive Soil	Observations of soil conditions prior to and after compaction, including soil structure, clod size, and presence of inclusions
00701	Compaction methods, equipment type, compactor weight and foot length, and number of passes
	Lift tie-in and bonding observations
	Repair of failed and damaged lifts
	Any and all deviations from the permitted design
	Thickness Verification
	Post-construction care of cohesive soil cover

	Roll shipment and receipt information
	Manufacturer's quality control certificates and results
	Storage and handling information
	Conformance test sampling and test results
Geosynthetic	Subgrade acceptance
Clay Liner	Panel deployment, identification, and placement
	Equipment placed or operated on GCL
	100 percent visual inspection for defects, damage, etc.
	Seaming methods
	Repairs, including patch size and shape
	Roll shipment and receipt information
	Manufacturer's quality control certificates and results
	Storage and handling information
	Conformance test sampling and test results
	Seamer's names and resumes of experience and qualifications
	Subgrade acceptance
	Panel deployment, identification, and placement
	Seam preparation, orientation, and identification
Geomembrane	Equipment placed or operated on geomembrane
Liner	100 percent visual inspection for defects, damage, etc.
	Trial seam tests for each combination of seaming equipment and personnel
	Seaming methods, times, temperature, and equipment shutdowns and startups
	Continuous 100 percent non-destructive seam testing, methods, criteria, and results
	Destructive testing methods, criteria, and results
	Repairs, including preparation and procedures, failure delineation, patch size and shape, and retesting
	Material properties and placement of drainage materials and soil cover
	Confirmation of the interface friction angle for the geomembrane/adjoining material interface and a recalculation of the factor of safety, if needed.
	Layout plan
	Previous covered areas
Record	As-built cohesive soil cover drawings, showing sample and test locations, and thickness
Drawings	As-built GCL panel layout drawings
	As-built geomembrane panel layout drawings, showing location of destructive test samples, patches, and repairs
	As-built drawings showing elevations of soil cover to confirm its thickness

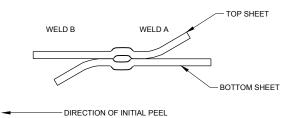
9.0 **REFERENCES**

Scalia, J.S. and C.H. Benson, 2011. Hydraulic Conductivity of Geosynthetic Clay Liners Exhumed from Landfill Final Covers with Composite Barriers, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 137, No. 1.

Revised: November 2017

CONSULTANT

YYYY-MM-DD	2017-11-07
DESIGNED	CEI
PREPARED	AA
REVIEWED	MX
APPROVED	JBF


PROJECT

EDINBURG REGIONAL DISPOSAL FACILITY
PERMIT AMENDMENT APPLICATION TCEQ PERMIT MSW-956C
EDINBURG, HIDALGO COUNTY, TEXAS

TITLE

EXTRUSION WELD SEAM BREAK CLASSIFICATION

PROJECT NO.	APPLICATION SECTION	REV.	FIGURE
1401491	III7D1	Λ	III7D_1_1
1401431	1117101	0	

SCHEMATIC OF UNTESTED SPECIMEN

TYPES OF FAILURE	LOCUS-OF-BREAK CODE	BREAK
	AD	ADHESION FAILURE
] BRK	BREAK IN SHEETING. BREAK CAN BE IN EITHER TOP OR BOTTOM SHEET.
	SE1	BREAK AT OUTER EDGE OF SEAM. BREAK CAN BE IN EITHER TOP OR BOTTOM SHEET.
] SE2	BREAK AT INNER EDGE OF SEAM THROUGH BOTH SHEETS.
] AD-BRK	BREAK IN FIRST SEAM AFTER SOME ADHESION FAILURE BREAK CAN BE IN EITHER THE TOP OF BOTTOM SHEET
	SIP	SEPARATION IN THE PLANE OF THE SHEET. BREAK CAN BE IN EITHER TOP OF BOTTOM SHEET.

Path: \\houston\drafting_2014\1401491 - city of edinburg\PRODUCTION\A - Permit Amendment Application

CLIENT

CONSULTANT

CITY OF EDINBURG SOLID WASTE MANAGEMENT

 YYYY-MM-DD
 2017-11-07

 DESIGNED
 CEI

 PREPARED
 AA

 REVIEWED
 MX

 APPROVED
 JBF

PROJECT

EDINBURG REGIONAL DISPOSAL FACILITY
PERMIT AMENDMENT APPLICATION TCEQ PERMIT MSW-956C
EDINBURG, HIDALGO COUNTY, TEXAS

TITLE

FUSION WELD SEAM BREAK CLASSIFICATION

PROJECT NO.	APPLICATION SECTION	REV.	FIGURE
1401491	III7D1	1	III7D-1-2