Country Meadows Estates Phase 1

Staff Report Supplement

Published May 20th, 2024

Table of Exhibits:

A: Traffic Impact Analysis	Page 2
B: Gopher Report	Page 55
C: Geotech Report	Page 77
D: Stormwater Report	Page 125

Country Meadows Estates Phase 1 Staff Report Supplement Exhibit A: Traffic Impact Analysis

COUNTRY MEADOW ESTATES I

Yelm, WA/Thurston County

TRAFFIC IMPACT ASSESSMENT (TIA)

Revised: February 21, 2024

HEATH&ASSOCIATES

Transportation Planning & Engineering

COUNTRY MEADOW ESTATES I TRAFFIC IMPACT ANALYSIS

Prepared for:

Evan Mann SoundBuilt Homes PO Box 73790 Puyallup, WA 98373

Prepared by:

Heath & Associates PO Box 397 Puyallup, WA 98371 (253) 770 1401 Heathtraffic.com

License:

Transportation Planning & Engineering

February 21, 2024

City of Yelm/WSDOT

Subject: Revisions to The Country Meadow Estates I Traffic Impact Analysis.

This letter is in response to the city of Yelm and WSDOT review comments regarding the TIA for The Country Meadow Estates I project.

WSDOT Comments

• Consider including phase II located in vicinity map.

The TIA has been updated accordingly.

• In the vicinity, WSDOT has both SR 507/SR 510 and SR 507/1st St N classified as functional class 4 (minor arterials).

The TIA has been updated accordingly.

• Please use a peak hour factor of 1.0 for future scenarios at SR 507, SR 510.

The TIA has been updated accordingly.

Please preform safety analysis.

The TIA has been updated accordingly.

• Please clarify the use of the phased TIA. The future year with/without project are 2026 for both phase I and II.

The TIA for Phase II has been updated with a forecast 2027 horizon year as buildout is projected a year after Phase 1.

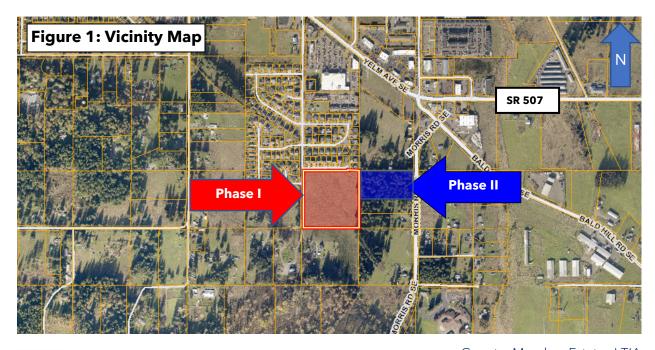
Please call if you require anything further.

Sincerely, Aaron Van Aken, P.E., PTOE

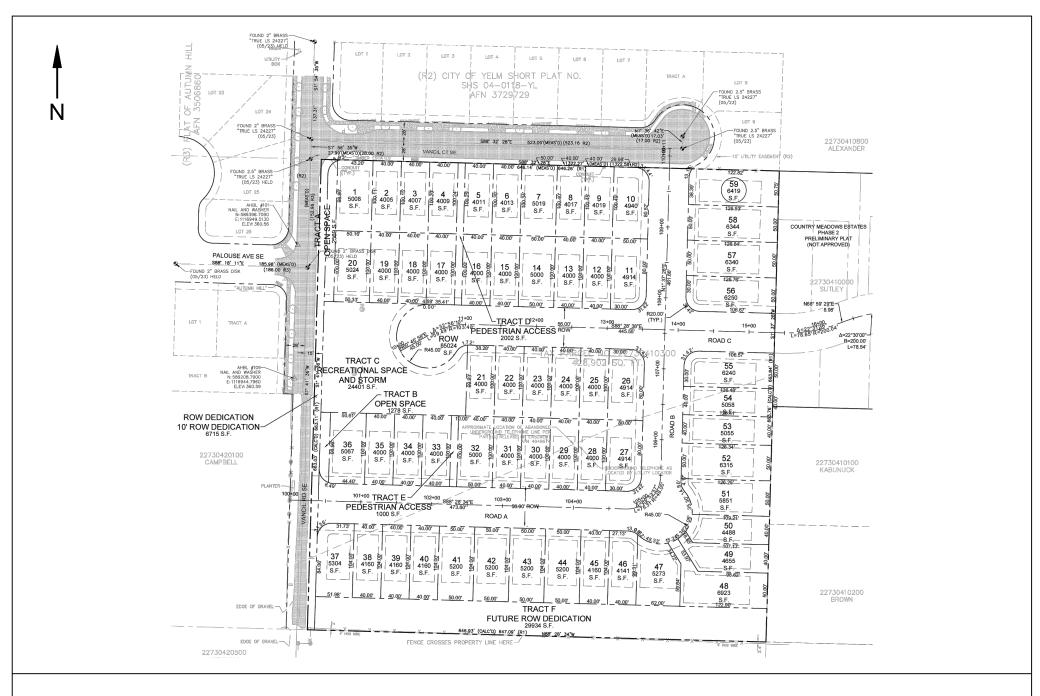
COUNTRY MEADOW ESTATES I TRAFFIC IMPACT ANALYSIS

CONTENTS

1.	Introduction	4
2.	Project Description	4
3.	Existing Conditions	
4.	Forecast Traffic Demand and Analysis	14
5.	Conclusions & Mitigation	
TΔ	ABLES	
1.	Roadway Network	6
2.	Transportation Improvement Projects	11
3.	Existing PM Peak Hour Level of Service	12
4.	Project Trip Generation	
5.	Forecast 2026 Weekday Peak Hour Level of Service Project	20
FIG	GURES	
1.	Vicinity Map & Roadway System	4
2.	Conceptual Site Plan	
3.	Existing PM Peak Hour Volumes	
4.	PM Peak Hour Pedestrian Volumes	
5.	PM Peak Hour Bicycle Volumes	
6.	PM Peak Hour Trip Distribution & Assignment	
7.	AM Peak Hour Pipeline Volumes	
8.	Forecast 2026 PM Peak Hour Volumes Without Project	
9.	Forecast 2026 PM Peak hour Volumes With Project	


COUNTRY MEADOW ESTATES I TRAFFIC IMPACT ANALYSIS

1. INTRODUCTION


The main goals of this study focus on the assessment of existing roadway conditions and forecasts of newly generated project traffic. The first task includes the review of general roadway information on the adjacent street system and baseline vehicular volumes. Forecasts of future traffic and dispersion patterns on the street system are then determined using established trip generation and distribution techniques. As a final step, appropriate conclusions and mitigation measures are defined if needed.

2. PROJECT DESCRIPTION

Country Meadow Estates I proposes for the construction of a residential development consisting of 59 single-family homes located within unincorporated Thurston County. The subject site is bordered to the west by Vancil Road SE situated 10.0-acres within undeveloped tax parcel #: 22730410300. Site ingress/egress is proposed via one new access point extending east from Vancil Road SE. Connectivity to the north development is also proposed via Vancil Court SE. Moreover, a future easterly connection is provided (to tie into Country Meadow Estates II). A vicinity map is provided below with Phase I shown in red and phase II shown in blue. Figure 2 on the following page displays the conceptual site plan.

SITE PLAN FIGURE 2

3. EXISTING CONDITIONS

3.1 Existing Street System

Characteristics of the major roadways and arterials serving the subject site are provided in Table 1 below.

Table 1: Roadway Network

Functional Classification	Roadway	Speed Limit (MPH)	Lanes	Sidewalk/ Walking Path	Street Parking	Bike Lane
WSDOT - Minor	SR 507/SR 510 ¹	25-45	2-3	In city area	Some	Some
Arterial	1st St S/SR 507 ²	25-40	2-3	N/O Mossman	No	No
Urban Arterial	1st St N	25	2-3	S/O Stevens	No	No
Neighborhood	Clark Rd SE	35	2	No	No	No
Collector	Vancil Rd SE	25	2	Some	No	No
Local	Plaza Dr	25*	2	Yes	Yes	No

^{*}No observed speed limit so city standard 25 mph applies.

3.2 Transit Service

A review of the Intercity Transit regional bus schedule indicates that transit is available within walking distance (under one mile) from the subject site. The closest stop in relation to the subject site is located at the Nisqually Plaza (~ 2,300' north of site). The bus route served at the intersection is Route 94 - Boulevard Road/Yelm. Route 94 provides service from the Olympia Transit Center to the Yelm Walmart. Weekday service is provided from 6:04 AM - 9:58 PM with approximately 60-minute headways during peak travel times. Weekend service is provided from 6:39 AM - 9:58 PM with approximately 60-minute headways. Refer to the Intercity Transit website for more detailed information.

² WSDOT - Functional Class 4 (Minor Arterial)

Country Meadow Estates I TIA

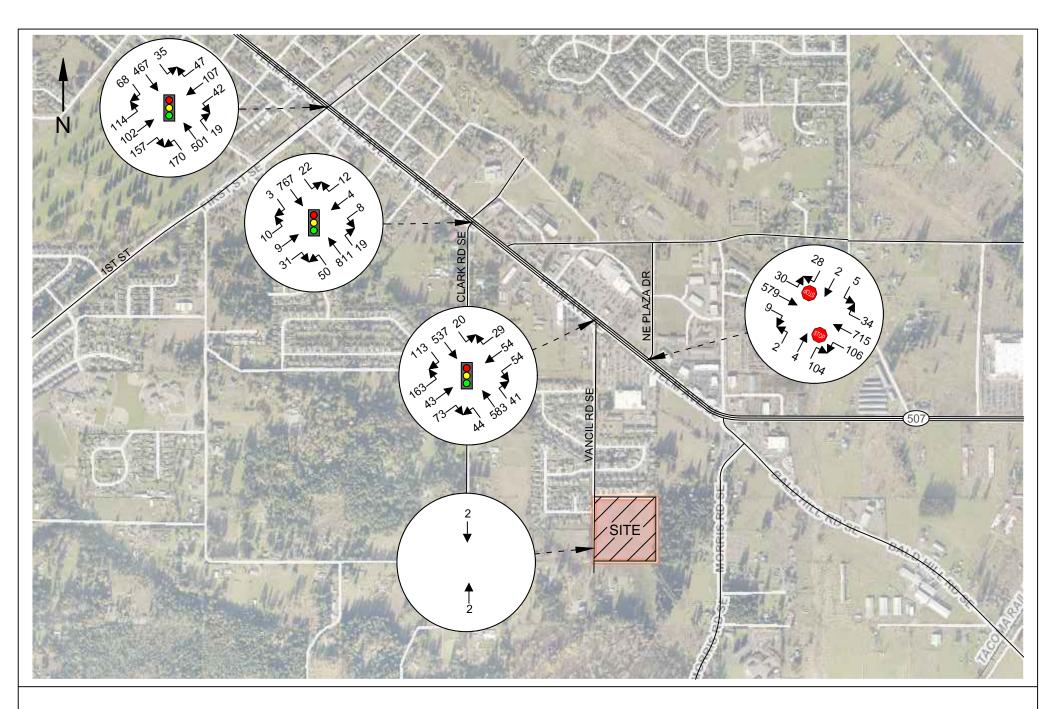
¹ WSDOT - Functional Class 4 (Minor Arterial)

3.3 Existing Peak Hour Volumes and Travel Patterns

Field data for this study was collected in May and June 2023 at four outlying study intersections (school still in session). Each intersection is listed on the following page.

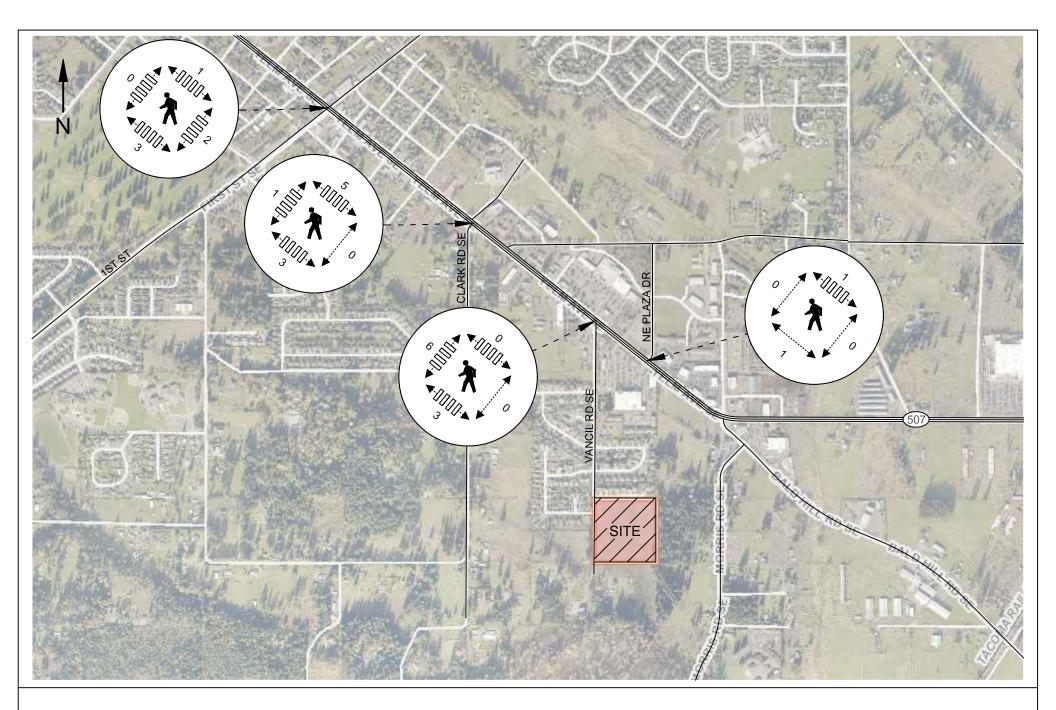
- SR 510/SR 507 & N 1st Street/S 1st Street/SR 507 (6/14/2023)
- SR 507 & Clark Road SE (6/14/2023)
- SR 507 & Vancil Road SE (5/3/2023)
- SR 507 & Plaza Drive (6/14/2023)

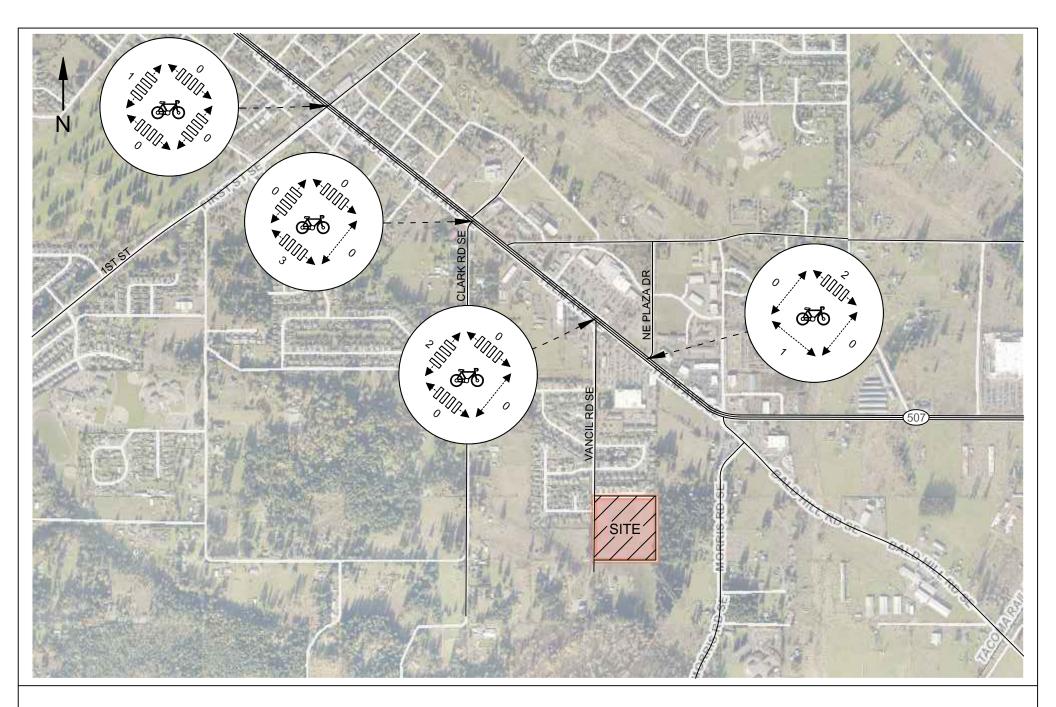
Data were obtained during the evening peak period from 4:00-6:00 PM. The single hour representing peak volumes for the PM time period is then determined and used for capacity analysis. Figure 3 highlights existing PM peak hour volumes. Count sheets have been included in the appendix for reference.


It is important to note that the proposed access for the project is to be situated south of Palouse Avenue SE, in which, Vancil Road SE supports three single family homes. The Institute of Transportation Engineers (ITE) publication, *Trip Generation*, 11th Edition was utilized to estimate the existing traffic crossing the proposed access point. LUC 210 was utilized (Single-Family Detached Homes) with dwelling units as the input variable and ITE equations to determine trip ends. ITE estimates that the three single family homes will result in 4 PM peak hour trips (2 inbound / 2 outbound) which will be applied as existing conditions along the projects frontage. Refer to the appendix for the trip generation output sheets.

3.4 Non-Motorist Activity and Infrastructure

Pedestrian and bicycle activity were monitored at each intersection studied for this project during routine PM peak hour field counts. Figures 4 and 5 display the existing non-motorist activity observed at each study intersection.


Non motorist infrastructure in the area consists of continuous sidewalk along Vancil Road SE which provides connection to SR 507 where many amenities and transit opportunities are present.



EXISTING PM PEAK HOUR VOLUMES FIGURE 3

EXISTING PM PEAK HOUR PEDESTRIAN VOLUMES FIGURE 4

EXISTING PM PEAK HOUR BICYCLE VOLUMES FIGURE 5

3.5 Roadway Improvements

The city of Yelm's most recent (2022-2027) Transportation Improvement Plan, the Thurston County Transportation Plan (2023-2028), and the Washington State STIP (Statewide Transportation Improvement program) (2023-2026) were all reviewed. The city of Yelm's TIP and the WSDOT STIP both indicated planned improvements in the vicinity of the proposed project, each project is listed and described below.

Table 2: Transportation Improvement Projects

	.	able 2. Hallsportation improvement i rojects	
Name	Location	Improvement	Cost
		City of Yelm	
2nd Ave SE ID #: WA12343	Mosman Ave to 575' south	Construct 5-foot-wide multi-use concrete sidewalk along the west side of 2nd Street SE from Cochrane Park to the existing sidewalk at Mosman Ave.	\$250,000
Mosman Ave SE ID #: WA- 12344	2nd St SE to 3rd St SE	Construct sidewalks on both sides of Mosman Ave, install intersection treatment at 2nd St and Mosman Ave. Construct bike lanes from 2nd St to 3rd St.	\$310,000
Yelm Ave Improvements ID #: WA- 12346	1st St to 4th St	Construction and repair of sidewalks, installation of new parallel parking, intersection treatment, and access control along both sides of Yelm Ave.	\$2,321,800
Mosman Ave II ID #: Yelm 13 01	Longmire to Railroad	Construct a new road connecting Longmire St with the new Mosman Ave intersection. Bike lanes, sidewalk, street lighting, and storm water improvements are included. Improvements include construction of new road from Longmire to Solberg, and reconstruction of Mosman between Solberg and Railroad.	\$11,482,200
		Statewide Transportation Improvement Plan	
SR 510/Yelm Loop	SR 510	Traffic throughout the city is extremely congested at this time. This project will construct the second stage of a new alignment for SR 510 through the city of Yelm. When complete, this project will relieve congestion and improve motorist safety.	\$58,697,552

Several planned improvements would further increase non-motorist mobility in the area. Moreover, the anticipated new SR 510 loop would relieve congestion along SR 507/510 (E Yelm Avenue).

3.6 Existing Level of Service

Peak hour delays were determined through the use of the *Highway Capacity Manual* 7th Edition. Capacity analysis is used to determine level of service (LOS) which is an established measure of congestion for transportation facilities. The range³ for intersection level of service is LOS A to LOS F with the former indicating the best operating conditions with low control delays and the latter indicating the worst conditions with heavy control delays. Detailed descriptions of intersection LOS are given in the Highway Capacity Manual. Level of service calculations were made through the use of the *Synchro 12* analysis program. For signalized intersections, LOS is determined by the overall average delay. For side-street stop-controlled intersections, LOS is determined by the approach with the highest delay. Table 3 below summarizes existing LOS and delays for the key intersections of study.

Table 3: Existing PM Peak Hour Level of Service

Delays given in seconds per vehicle

Intersection	Control	Movement	LOS	Delay
SR 507/SR 510 & 1st St	Signal	Overall	С	22.8
SR 507 & Clark Rd SE	Signal	Overall	В	10.0
SR 507 & Vancil Rd SE	Signal	Overall	В	19.1
SR 507 & NE Plaza Dr	Stop	SWB	D	25.2

^{*}SWB-Southwest Bound

City Level of Service Standards⁴: Yelm has an adopted a Level of Service Standard D.

State Level of Service Standards⁵: SR 507/SR 510 also have an adopted a Level of Service Standard D.

³ Signalized Inter	rsections - Level of Service Control Delay per	Stop Controlled In	tersections - Level of Service Control Delay per
Level of Service	<u>Vehicle (sec)</u>	<u>Level of Service</u>	<u>Vehicle (sec)</u>
Α	≤10	Α	≤10
В	>10 and ≤20	В	>10 and ≤15
С	>20 and ≤35	С	>15 and ≤25
D	>35 and ≤55	D	>25 and ≤35
Ε	>55 and ≤80	Е	>35 and ≤50
F	>80	F	>50

Highway Capacity Manual, 7th Edition

⁵ WSDOT - Level of Service Standard - ArcGIS

⁴ Yelm Comprehensive Plan.

Existing PM peak hour conditions are shown to operate with LOS D conditions or better meeting state and city level of service standards, no intersection deficiencies are identified.

It is important to note that a new route SR 510/Yelm Loop is proposed in WSDOT's Statewide Improvement Plan which is reported to relieve congestion along SR 510 and thus lowering the delay times.

3.7 Collision History

Collision history at each study intersection was requested from WSDOT for five full years from the beginning of 2018 through 2022. For each intersection, the crash rate per million entering vehicles (MEV)⁶ was calculated, see below. ADT estimates are based on the PM peak hour volumes multiplied by 10. Refer to Table 4 below.

2019 Intersection 2018 2020 2021 2022 Avg/Yr **MEV** SR 507/SR 510 & 1st St 3 7 3 5 5.4 8.0 SR 507 & Clark Rd SE 4 3 0 3 0 2.0 0.3 SR 507 & Vancil Rd SE 3 1 3 9 5 4.2 0.7 SR 507 & NE Plaza Dr 4 4 0 1 4 2.6 0.5 Vancil Rd SE & Access 0 0 0.0 0 0 0 0.0

Table 4: Collision History

The study area (five intersections) received a total of 71 collisions with 29 collisions resulting in possible injury (20), suspected minor injury (7), and suspected serious injury (2) - with zero fatalities.

The collision types were listed as rear-end (46), followed by enter at angle (8), sideswipe (5), from opposite direction (4), from same direction (4), struck building (2), and vehicle strikes pedalcyclist (2).

Non-Motorist Involved Collisions:

Both non-motorist collisions occurred at the intersection of SR 507 & Vancil Road SE. The first collision took place in 2018 around noon. A vehicle was making a left turn when they struck a pedalcyclist. There is no driver contributing circumstance listed. The second collision took place in 2020 as a northwestbound vehicle struck a cyclist. There is no drive contributing circumstance listed. Both collisions resulted in possible/minor injury.

⁶ $R=rac{A*1,000,000}{365*N*V}$, Where A = # of crashes and V = Intersection ADT

Country Meadow Estates I TIA

4. FORECAST TRAFFIC DEMAND & ANALYSIS

4.1 Project Trip Generation

Trip generation is defined as the number of vehicle movements that enter or exit the respective project site during a designated time period, such as a specific peak hour (AM or PM) or an entire day. The magnitude of the anticipated vehicle trip generation for the proposed project was derived from the Institute of Transportation Engineers (ITE) publication, *Trip Generation*, 11th Edition. Based on the proposed development, the designated land use is defined as LUC - 210 Single-Family Detached Housing. Dwelling units were used as the input variable with ITE's equations to determine trip ends. ITE trip generation sheets have been included in the appendix for reference. See Table 5 below.

Table 5: Project Trip Generation

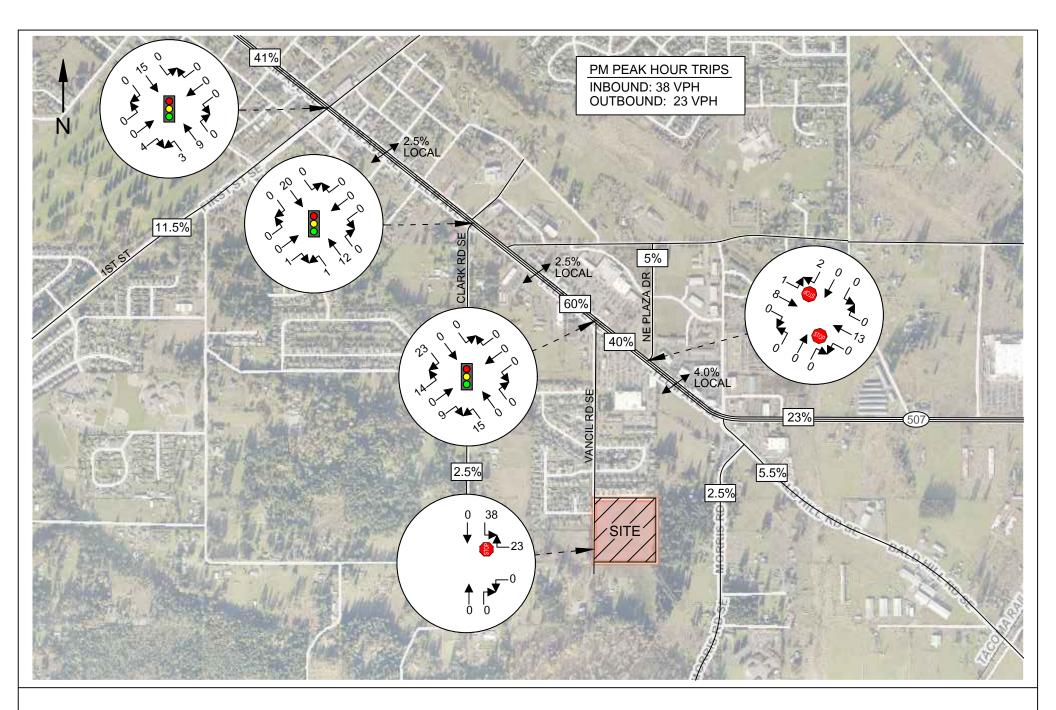
Land Use	Units	AWDT -	AM F	eak-Hou	r Trips	PM P	r Trips	
Lailu OSE	Oilits	AWDI	ln	Out	Total	ln	Out	Total
LUC 210 Single Family	59	621	12	34	46	38	23	61

Based on the data presented in Table 5, the project can be expected to generate 621 average weekday daily trips with 46 trips (12 inbound / 34 outbound) occurring in the AM peak hour and 61 trips (38 inbound / 23 outbound) occurring in the PM peak hour.

4.2 Distribution & Assignment

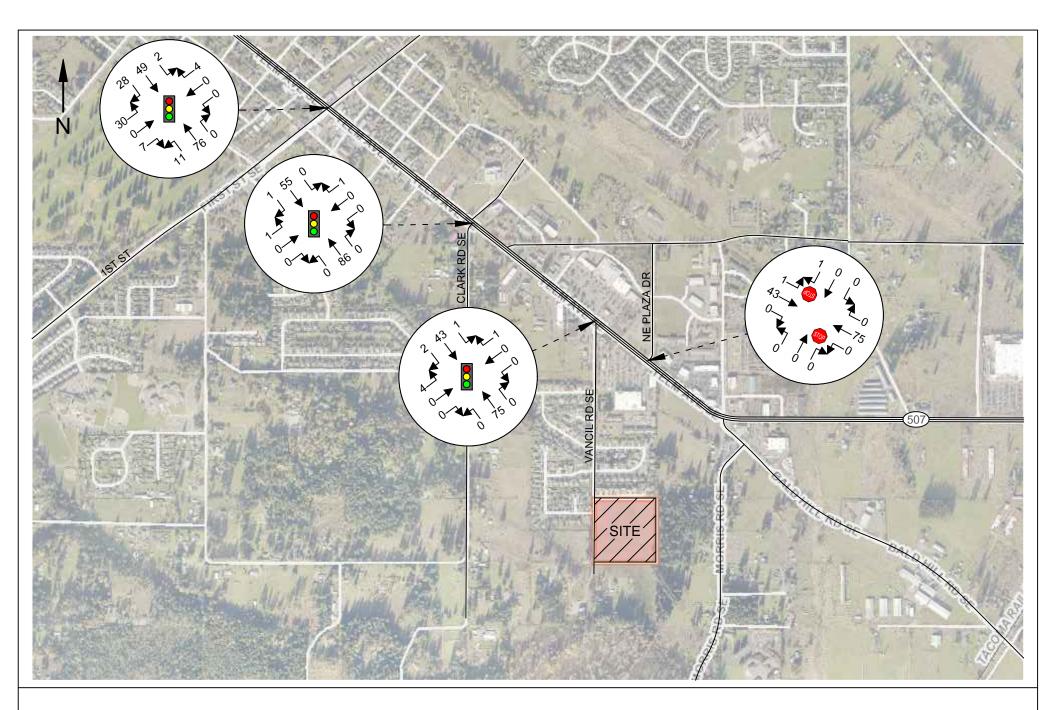
Trip distribution describes the process by which project generated trips are dispersed on the roadway network surrounding the site. The trip distribution for this project utilized the TAZ 726 Map which was provided by TRPC. Figure 6 highlights the PM peak hour trip distribution & assignment.

4.3 Future Peak Hour Volumes

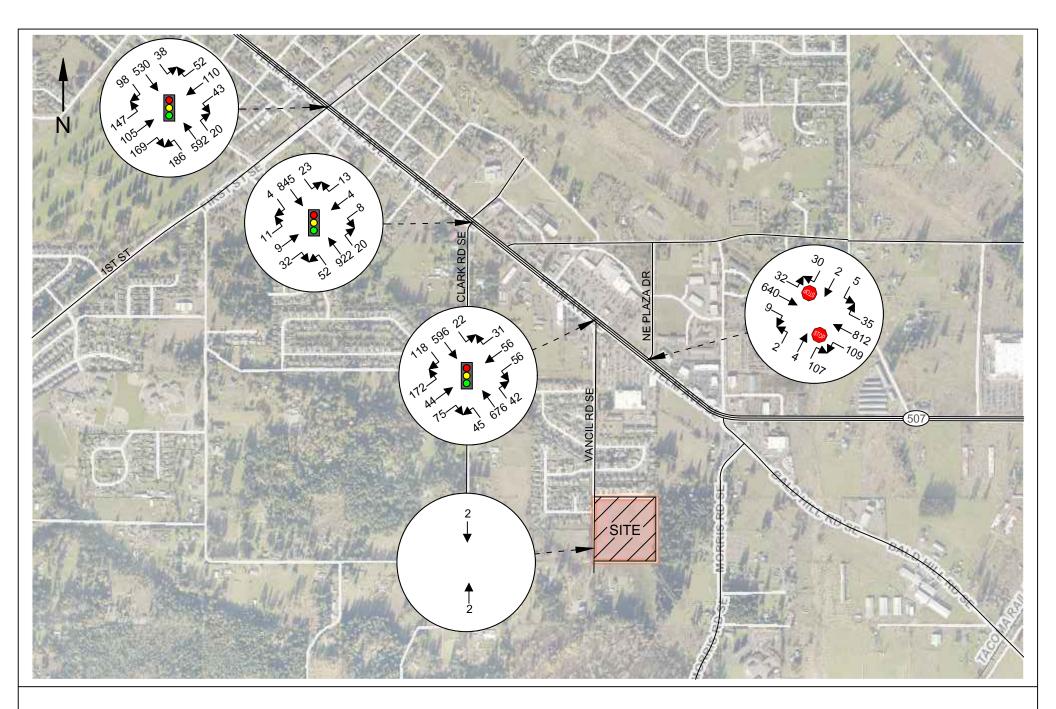

A 3-year horizon of 2026 was used for future traffic delay analysis. Forecast 2026 background traffic volumes were derived by applying a one percent compound annual growth rate to the existing volumes shown in Figure 3. This growth rate was developed from WSDOT volumes along SR 507 just south of 1st Street which are shown to be consistent from 2016 (ADT – 18,000) to 2019 (ADT – 18,000) (pre-COVID conditions). Moreover, also taken into consideration are in-process developments within the city which includes: The Hutch⁷, Durant Street Plat, Alpine Estates, Tahoma Boulevard Apartments, El Rey Burro, The Summit at Thompson Creek, Samantha Ridge, Habitat for Humanity, Liberty Grove, and 407 E Yelm Coffee. PM peak hour pipeline volumes are shown in Figure 7.

Forecast 2026 PM peak hour volumes without the project (background growth plus pipeline) are shown in Figure 8 while Figure 9 illustrates forecast 2026 volumes with the addition of project-generated traffic. It is important to note that phase I of the project is estimated to be completed in 2026. Phase II has an estimated 2027 horizon year.

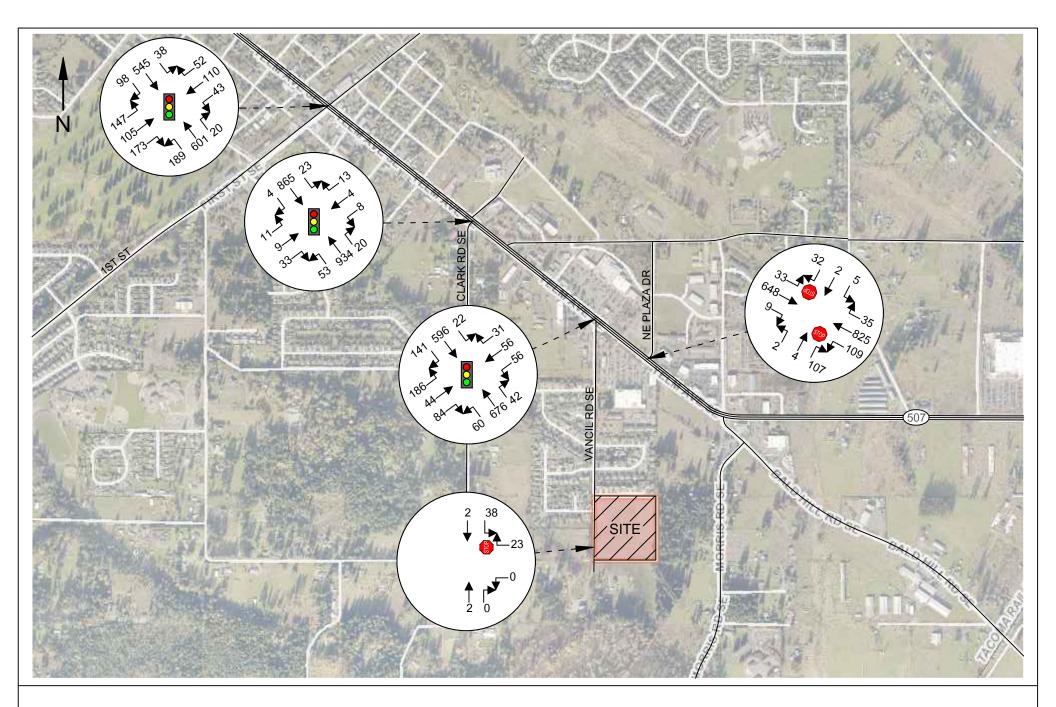
⁷ Based on site visit (6/14/23), approximately 40/118 homes were constructed and occupied. Therefore, 70% of the trips have been applied as pipeline trips.



Country Meadow Estates I TIA



PM PEAK HOUR TRIP DISTRIBUTION & ASSIGNMENT FIGURE 6



PM PEAK HOUR PIPELINE VOLUMES FIGURE 7

FORECAST 2026 PM PEAK HOUR VOLUMES WITHOUT PROJECT FIGURE 8

FORECAST 2026 PM PEAK HOUR VOLUMES WITH PROJECT FIGURE 9

4.4 Future Level of Service

Level of service analyses were made of the future PM peak hour volumes without (background) and with project related trips added to the key roadways and intersections. This analysis once again involved the use of the *Synchro 12 analysis* program. Delays for the study/access intersections under future conditions are shown below in Table 6.

Per WSDOT Synchro policy, the peak hour factor (PHF) for all state intersections have been changed to 1.0 under forecast conditions.

Table 6: Forecast 2026 Weekday Peak Hour Level of Service Project

Delays Given in Seconds per Vehicle

				<u>Witho</u>	<u>ut Project</u>	With Project		
Intersection	LOS Standard	Control	Critical Mvm.	LOS	Delay	LOS	Delay	
SR 507/SR 510 & 1st St	D	Signal	Overall	С	25.1	С	25.9	
SR 507 & Clark Rd SE	D	Signal	Overall	В	10.1	В	10.3	
SR 507 & Vancil Rd SE	D	Signal	Overall	С	20.3	С	21.1	
SR 507 & NE Plaza Dr	D	Two-Way Stop	SWB	D	29.4	D	29.7	
Vancil Rd SE & Access	D	One-Way Stop	WB			Α	8.4	

Forecast 2026 PM peak hour level of service is shown to operate with LOS D conditions or better, meeting city and state level of service standards. As such, no operational deficiencies are identified as a result of the proposed development.

4.5 Access & Sight Distance

Access to and from the site is proposed via one new access point extending east from Vancil Road SE. Access is also proposed via a northern connection to Vancil Court SE and via a future easterly connection (to Country Meadows II).

In accordance with established AASHTO Standards⁸ and the 35-mph posted speed limit along Vancil Road SE, sight lines would need to meet or exceed 390 feet. Based on preliminary measurements, sight lines are shown to exceed the 390-feet requirement. No deficiencies are identified with the proposed access location.

4.6 Left Turn Lane Warrant

Left turn lanes are a means of providing necessary storage space for left turning vehicles at intersections. Procedures prescribed by WSDOT Design Manual Exhibit 1310-9 were used to ascertain storage requirements at the proposed access intersection via Vancil Road SE. Based on forecast 2026 PM peak hour volumes with project traffic - a left turn lane would not be warranted. Refer to the appendix for the left turn warrant nomograph.

⁸ AASHTO Green Book (pg. 4.13)

5. CONCLUSIONS & MITIGATION

Country Meadow Estates I is a proposed residential development comprised of 59 single family homes located within the city of Yelm's Urban Growth Area (UGA) of Thurston County. The subject site is bordered to the west by Vancil Road SE situated on 10.0-acres within a single tax parcel. Site ingress/egress is proposed via one new access extending east from Vancil Road SE with connectivity to the north and future connectivity to the east.

PM peak hour turning movement counts were conducted at four outlying study intersections. Based on ITE data, the incoming project is anticipated to generate 621 average weekday daily trips with 46 AM peak hour trips and 61 PM peak hour trips. A three-year horizon of 2026 was used to assess future conditions with and without project generated traffic. Future peak hour analysis included a 1.0% background growth rate to the existing volumes shown in Figure 4. Moreover, PM peak hour pipeline volumes from several nearby projects have been accounted for. Forecast 2026 PM peak hour level of service was shown to continue operating with LOS D conditions with the project, meeting city and state LOS standards. No operational deficiencies are identified as a result of the proposed Country Meadow Estates I project.

Based on the analysis above, recommended mitigation is as follows:

1. The subject development would be subject for Transportation Facilities Charge per city of Yelm requirements. The city imposes a fee of \$1,497.00 per PM peak hour primary trip. Initial fees are estimated as follows:

61 PM Peak Hour Trips x \$1,497.00 = \$91,317.00.

Please feel free to contact me should you have any questions.

Aaron Van Aken, P.E., PTOE

COUNTRY MEADOW ESTATES I TRAFFIC IMPACT ANALYSIS

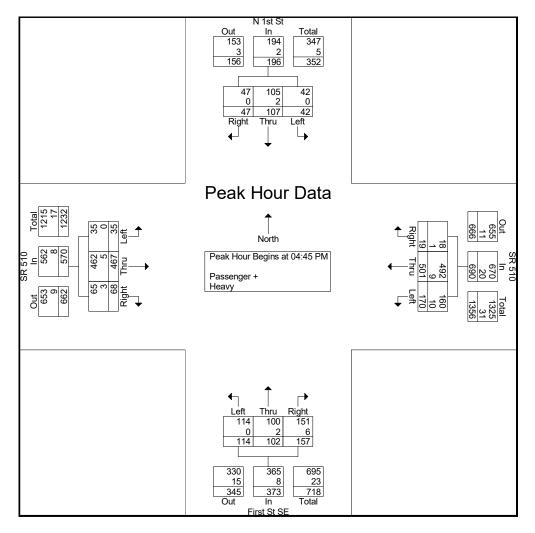
APPENDIX

PO Box 397 Puyallup, WA 98371

File Name : 5166c Site Code : 00005166 Start Date : 6/14/2023

Page No : 1

Groups Printed- Passenger + - Heavy


		N 1	st St				510			First	St SE			SR	510		
			bound				bound				bound				bound		
Start Time	Diaht	Thru	Left		Dight	Thru	Left		Diabt	Thru			Diabt	Thru	Left		Int. Total
	Right		Leit		Right			App. Total	Right			App. Total	Right				
04:00 PM	21	29	1	57	7	101	55	163	32	29	33	94	5	106	8	119	433
04:15 PM	12	31	10	53	3	130	53	186	39	31	27	97	7	90	5	102	438
04:30 PM	9	30	6	45	6	103	62	171	39	25	23	87	6	116	10	132	435
04:45 PM	13	27	8	48	5	125	37	167	45	26	25	96	20	124	4	148	459
Total	55	117	31	203	21	459	207	687	155	111	108	374	38	436	27	501	1765
05:00 PM	12	35	15	62	5	133	48	186	36	26	32	94	18	101	7	126	468
05:15 PM	8	21	11	40	2	126	43	171	39	24	30	93	13	131	10	154	458
05:30 PM	14	24	8	46	7	117	42	166	37	26	27	90	17	111	14	142	444
05:45 PM	6	29	5	40	5	114	47	166	46	14	24	84	19	123	9	151	441
Total	40	109	39	188	19	490	180	689	158	90	113	361	67	466	40	573	1811
																	-
Grand Total	95	226	70	391	40	949	387	1376	313	201	221	735	105	902	67	1074	3576
Apprch %	24.3	57.8	17.9		2.9	69	28.1		42.6	27.3	30.1		9.8	84	6.2		
Total %	2.7	6.3	2	10.9	1.1	26.5	10.8	38.5	8.8	5.6	6.2	20.6	2.9	25.2	1.9	30	
Passenger +	92	222	69	383	39	923	370	1332	298	197	218	713	102	888	66	1056	3484
% Passenger +	96.8	98.2	98.6	98	97.5	97.3	95.6	96.8	95.2	98	98.6	97	97.1	98.4	98.5	98.3	97.4
Heavy	3	4	1	8	1	26	17	44	15	4	3	22	3	14	1	18	92
% Heavy	3.2	1.8	1.4	2	2.5	2.7	4.4	3.2	4.8	2	1.4	3	2.9	1.6	1.5	1.7	2.6

PO Box 397 Puyallup, WA 98371

File Name : 5166c Site Code : 00005166 Start Date : 6/14/2023

Page No : 2

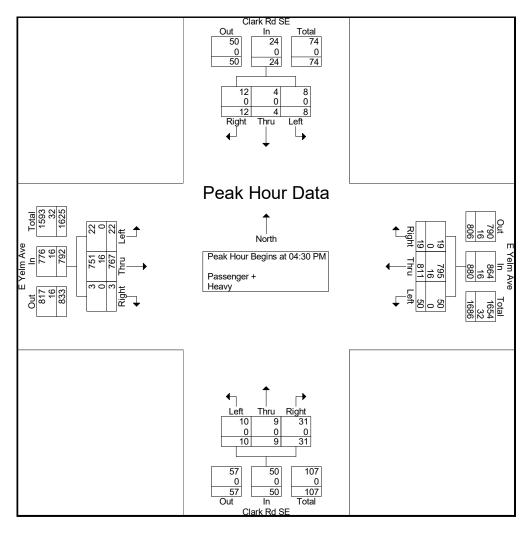
		N 1	st St			SR	510			First	St SE			SR	510		
		South	bound			West	bound			North	bound						
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana							1										<u>.</u>
Peak Hour for	Entire I	ntersec	tion Be	gins at 04	4:45 PM												
04:45 PM	13	27	8	48	5	125	37	167	45	26	25	96	20	124	4	148	459
05:00 PM	12	35	15	62	5	133	48	186	36	26	32	94	18	101	7	126	468
05:15 PM	8	21	11	40	2	126	43	171	39	24	30	93	13	131	10	154	458
05:30 PM	14	24	8	46	7	117	42	166	37	26	27	90	17	111	14	142	444
Total Volume	47	107	42	196	19	501	170	690	157	102	114	373	68	467	35	570	1829
% App. Total	24	54.6	21.4		2.8	72.6	24.6		42.1	27.3	30.6		11.9	81.9	6.1		
PHF	.839	.764	.700	.790	.679	.942	.885	.927	.872	.981	.891	.971	.850	.891	.625	.925	.977
Passenger +	47	105	42	194	18	492	160	670	151	100	114	365	65	462	35	562	1791
% Passenger +	100	98.1	100	99.0	94.7	98.2	94.1	97.1	96.2	98.0	100	97.9	95.6	98.9	100	98.6	97.9
Heavy	0	2	0	2	1	9	10	20	6	2	0	8	3	5	0	8	38
% Heavy	0	1.9	0	1.0	5.3	1.8	5.9	2.9	3.8	2.0	0	2.1	4.4	1.1	0	1.4	2.1

PO Box 397 Puyallup, WA 98371

File Name : 5164a Site Code : 00005164 Start Date : 6/14/2023

Page No : 1

Groups Printed- Passenger + - Heavy


		Clark	Rd SE				m Ave	itou i uo	Jungu.	Clark	Rd SE			E Yel	m Ave		
		South	bound				bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	1	2	2	5	1	172	13	186	18	2	4	24	2	145	5	152	367
04:15 PM	3	2	1	6	4	209	12	225	16	2	4	22	2	159	6	167	420
04:30 PM	2	1	0	3	2	207	13	222	10	3	2	15	2	206	6	214	454
04:45 PM	4	0	4	8	5	196	7	208	8	4	6	18	0	184	7	191	425
Total	10	5	7	22	12	784	45	841	52	11	16	79	6	694	24	724	1666
05:00 PM	2	2	3	7	6	201	22	229	7	1	2	10	1	175	6	182	428
05:15 PM	4	1	1	6	6	207	8	221	6	1	0	7	0	202	3	205	439
05:30 PM	4	0	1	5	4	190	10	204	14	0	2	16	4	181	6	191	416
05:45 PM	1	0	3	4	5	202	24	231	11	2	1	14	1	203	3	207	456
Total	11	3	8	22	21	800	64	885	38	4	5	47	6	761	18	785	1739
																	'
Grand Total	21	8	15	44	33	1584	109	1726	90	15	21	126	12	1455	42	1509	3405
Apprch %	47.7	18.2	34.1		1.9	91.8	6.3		71.4	11.9	16.7		0.8	96.4	2.8		
Total %	0.6	0.2	0.4	1.3	1	46.5	3.2	50.7	2.6	0.4	0.6	3.7	0.4	42.7	1.2	44.3	
Passenger +	21	7	15	43	33	1541	108	1682	87	15	20	122	12	1425	42	1479	3326
% Passenger +	100	87.5	100	97.7	100	97.3	99.1	97.5	96.7	100	95.2	96.8	100	97.9	100	98	97.7
Heavy	0	1	0	1	0	43	1	44	3	0	1	4	0	30	0	30	79
% Heavy	0	12.5	0	2.3	0	2.7	0.9	2.5	3.3	0	4.8	3.2	0	2.1	0	2	2.3

PO Box 397 Puyallup, WA 98371

File Name : 5164a Site Code : 00005164 Start Date : 6/14/2023

Page No : 2

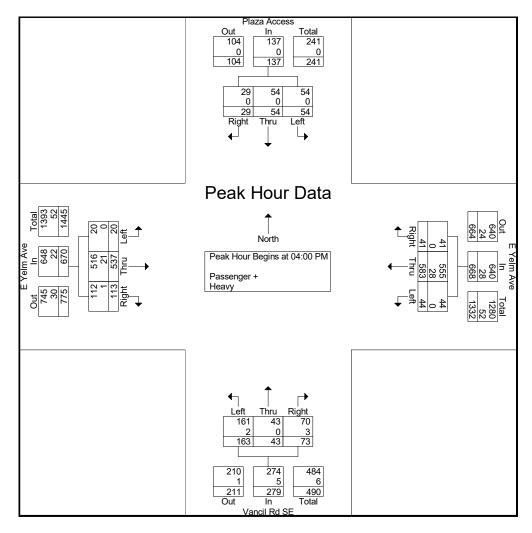
		Clark	Rd SE			E Yel	m Ave			Clark	Rd SE			E Yel	m Ave		
		South	bound			West	bound			North	bound			Eastl	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour An	alysis Fi	rom 04:	00 PM 1	to 05:45	PM - Pe	eak 1 of	1										
Peak Hour for	Entire I	ntersec	tion Beg	gins at 04	4:30 PM												
04:30 PM	2	1	0	3	2	207	13	222	10	3	2	15	2	206	6	214	454
04:45 PM	4	0	4	8	5	196	7	208	8	4	6	18	0	184	7	191	425
05:00 PM	2	2	3	7	6	201	22	229	7	1	2	10	1	175	6	182	428
05:15 PM	4	1	1	6	6	207	8	221	6	1	0	7	0	202	3	205	439
Total Volume	12	4	8	24	19	811	50	880	31	9	10	50	3	767	22	792	1746
% App. Total	50	16.7	33.3		2.2	92.2	5.7		62	18	20		0.4	96.8	2.8		
PHF	.750	.500	.500	.750	.792	.979	.568	.961	.775	.563	.417	.694	.375	.931	.786	.925	.961
Passenger +	12	4	8	24	19	795	50	864	31	9	10	50	3	751	22	776	1714
% Passenger +	100	100	100	100	100	98.0	100	98.2	100	100	100	100	100	97.9	100	98.0	98.2
Heavy	0	0	0	0	0	16	0	16	0	0	0	0	0	16	0	16	32
% Heavy	0	0	0	0	0	2.0	0	1.8	0	0	0	0	0	2.1	0	2.0	1.8

PO Box 397 Puyallup, WA 98371

File Name : 5142b Site Code : 00005142 Start Date : 5/3/2023

Page No : 1

Groups Printed- Passenger + - Heavy


	Plaza Access E Yelm Ave					Vancil Rd SE E Yelm Ave											
			bound	,			bound		Northbound				Eastbound				
Start Time	Right	Thru	Left		Right	Thru	Left	App. Total	Right	Thru	Left		Right	Thru	Left	1.1	Int. Total
04:00 PM	7	9	15	31	12	155	9	176	12	15	34	61	32	128	8	168	436
04:15 PM	7	18	16	41	7	142	9	158	19	10	54	83	29	127	3	159	441
04:30 PM	8	13	15	36	11	141	11	163	21	7	42	70	22	141	3	166	435
04:45 PM	7	14	8	29	11	145	15	171	21	11	33	65	30	141	6	177	442
Total	29	54	54	137	41	583	44	668	73	43	163	279	113	537	20	670	1754
05:00 PM	11	15	12	38	17	129	10	156	16	7	35	58	28	123	7	158	410
05:15 PM	6	17	16	39	9	127	9	145	20	7	44	71	44	144	7	195	450
05:30 PM	11	8	18	37	5	144	9	158	22	5	36	63	38	114	8	160	418
05:45 PM	7	18	15	40	7	137	5	149	17	14	39	70	27	133	10	170	429
Total	35	58	61	154	38	537	33	608	75	33	154	262	137	514	32	683	1707
																	•
Grand Total	64	112	115	291	79	1120	77	1276	148	76	317	541	250	1051	52	1353	3461
Apprch %	22	38.5	39.5		6.2	87.8	6		27.4	14	58.6		18.5	77.7	3.8		
Total %	1.8	3.2	3.3	8.4	2.3	32.4	2.2	36.9	4.3	2.2	9.2	15.6	7.2	30.4	1.5	39.1	
Passenger +	64	112	115	291	79	1074	77	1230	145	76	315	536	247	1020	52	1319	3376
% Passenger +	100	100	100	100	100	95.9	100	96.4	98	100	99.4	99.1	98.8	97.1	100	97.5	97.5
Heavy	0	0	0	0	0	46	0	46	3	0	2	5	3	31	0	34	85
% Heavy	0	0	0	0	0	4.1	0	3.6	2	0	0.6	0.9	1.2	2.9	0	2.5	2.5

PO Box 397 Puyallup, WA 98371

File Name : 5142b Site Code : 00005142 Start Date : 5/3/2023

Page No : 2

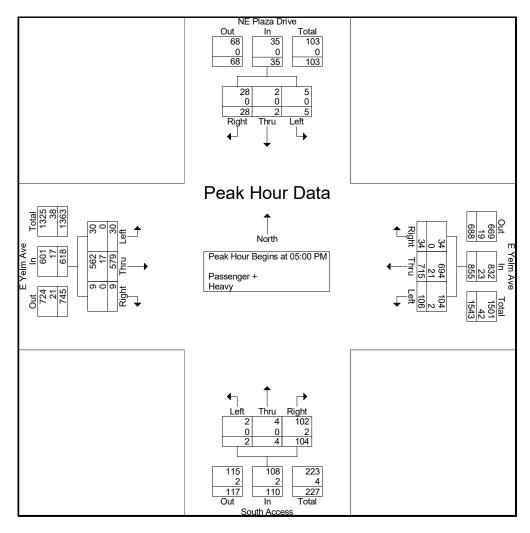
		Plaza	Access	;		E Yelm Ave			Vancil Rd SE			E Yelm Ave					
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for	Entire I	ntersect	tion Be	gins at 04	4:00 PM												
04:00 PM	7	9	15	31	12	155	9	176	12	15	34	61	32	128	8	168	436
04:15 PM	7	18	16	41	7	142	9	158	19	10	54	83	29	127	3	159	441
04:30 PM	8	13	15	36	11	141	11	163	21	7	42	70	22	141	3	166	435
04:45 PM	7	14	8	29	11	145	15	171	21	11	33	65	30	141	6	177	442
Total Volume	29	54	54	137	41	583	44	668	73	43	163	279	113	537	20	670	1754
% App. Total	21.2	39.4	39.4		6.1	87.3	6.6		26.2	15.4	58.4		16.9	80.1	3		
PHF	.906	.750	.844	.835	.854	.940	.733	.949	.869	.717	.755	.840	.883	.952	.625	.946	.992
Passenger +	29	54	54	137	41	555	44	640	70	43	161	274	112	516	20	648	1699
% Passenger +	100	100	100	100	100	95.2	100	95.8	95.9	100	98.8	98.2	99.1	96.1	100	96.7	96.9
Heavy	0	0	0	0	0	28	0	28	3	0	2	5	1	21	0	22	55
% Heavy	0	0	0	0	0	4.8	0	4.2	4.1	0	1.2	1.8	0.9	3.9	0	3.3	3.1

PO Box 397 Puyallup, WA 98371

File Name : 5164b Site Code : 00005164 Start Date : 6/14/2023

Page No : 1

Groups Printed- Passenger + - Heavy


		NE Plaz	za Driv	e			m Ave	itou i uo		South	Access	S		E Yel	m Ave		
			bound	_			bound				bound	=			bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	11	0	1	12	9	195	30	234	22	1	0	23	1	113	10	124	393
04:15 PM	9	0	2	11	11	173	36	220	22	0	1	23	2	139	7	148	402
04:30 PM	6	0	1	7	8	176	17	201	27	0	0	27	1	127	8	136	371
04:45 PM	12	1	2	15	8	194	36	238	23	0	0	23	1	121	6	128	404
Total	38	1	6	45	36	738	119	893	94	1	1	96	5	500	31	536	1570
	'				'				, i				'				
05:00 PM	5	1	1	7	9	191	33	233	27	2	1	30	2	120	6	128	398
05:15 PM	8	0	0	8	8	181	26	215	25	1	0	26	1	145	8	154	403
05:30 PM	7	0	2	9	5	168	21	194	26	0	0	26	2	165	6	173	402
05:45 PM	8	1	2	11	12	175	26	213	26	1	1	28	4	149	10	163	415
Total	28	2	5	35	34	715	106	855	104	4	2	110	9	579	30	618	1618
Grand Total	66	3	11	80	70	1453	225	1748	198	5	3	206	14	1079	61	1154	3188
Apprch %	82.5	3.8	13.8		4	83.1	12.9		96.1	2.4	1.5		1.2	93.5	5.3		
Total %	2.1	0.1	0.3	2.5	2.2	45.6	7.1	54.8	6.2	0.2	0.1	6.5	0.4	33.8	1.9	36.2	
Passenger +	66	3	11	80	68	1411	223	1702	192	5	3	200	14	1045	59	1118	3100
% Passenger +	100	100	100	100	97.1	97.1	99.1	97.4	97	100	100	97.1	100	96.8	96.7	96.9	97.2
Heavy	0	0	0	0	2	42	2	46	6	0	0	6	0	34	2	36	88
% Heavy	0	0	0	0	2.9	2.9	0.9	2.6	3	0	0	2.9	0	3.2	3.3	3.1	2.8

PO Box 397 Puyallup, WA 98371

File Name : 5164b Site Code : 00005164 Start Date : 6/14/2023

Page No : 2

		NE Plaz	za Drive	9		E Yelm Ave			South Access				E Yelm Ave				
		South	bound			West	bound			North	bound			Eastl	bound		
Start Time	Right	Thru		App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																
Peak Hour for	Entire In	ntersect	ion Beg	gins at 0	5:00 PM												
05:00 PM	5	1	1	7	9	191	33	233	27	2	1	30	2	120	6	128	398
05:15 PM	8	0	0	8	8	181	26	215	25	1	0	26	1	145	8	154	403
05:30 PM	7	0	2	9	5	168	21	194	26	0	0	26	2	165	6	173	402
05:45 PM	8	1	2	11	12	175	26	213	26	1	1	28	4	149	10	163	415
Total Volume	28	2	5	35	34	715	106	855	104	4	2	110	9	579	30	618	1618
% App. Total	80	5.7	14.3		4	83.6	12.4		94.5	3.6	1.8		1.5	93.7	4.9		
PHF	.875	.500	.625	.795	.708	.936	.803	.917	.963	.500	.500	.917	.563	.877	.750	.893	.975
Passenger +	28	2	5	35	34	694	104	832	102	4	2	108	9	562	30	601	1576
% Passenger +	100	100	100	100	100	97.1	98.1	97.3	98.1	100	100	98.2	100	97.1	100	97.2	97.4
Heavy	0	0	0	0	0	21	2	23	2	0	0	2	0	17	0	17	42
% Heavy	0	0	0	0	0	2.9	1.9	2.7	1.9	0	0	1.8	0	2.9	0	2.8	2.6

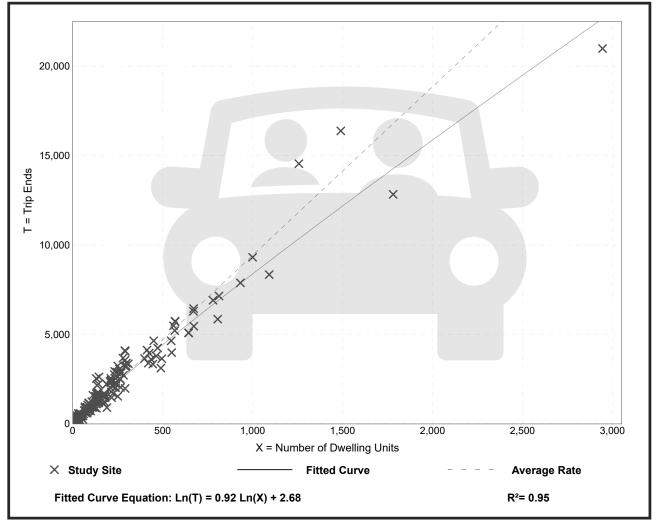
Single-Family Detached Housing

(210)

Vehicle Trip Ends vs: **Dwelling Units**

On a: Weekday

Setting/Location: General Urban/Suburban


Number of Studies: 174 Avg. Num. of Dwelling Units: 246

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.43	4.45 - 22.61	2.13

Data Plot and Equation

Trip Gen Manual, 11th Edition

• Institute of Transportation Engineers

Single-Family Detached Housing

(210)

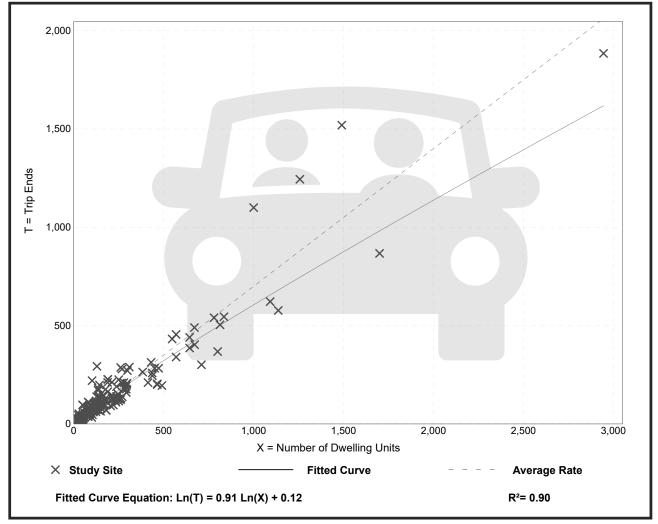
Vehicle Trip Ends vs: **Dwelling Units**

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 7 and 9 a.m.

Setting/Location: General Urban/Suburban


Number of Studies: 192 Avg. Num. of Dwelling Units: 226

> Directional Distribution: 26% entering, 74% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.70	0.27 - 2.27	0.24

Data Plot and Equation

Trip Gen Manual, 11th Edition

• Institute of Transportation Engineers

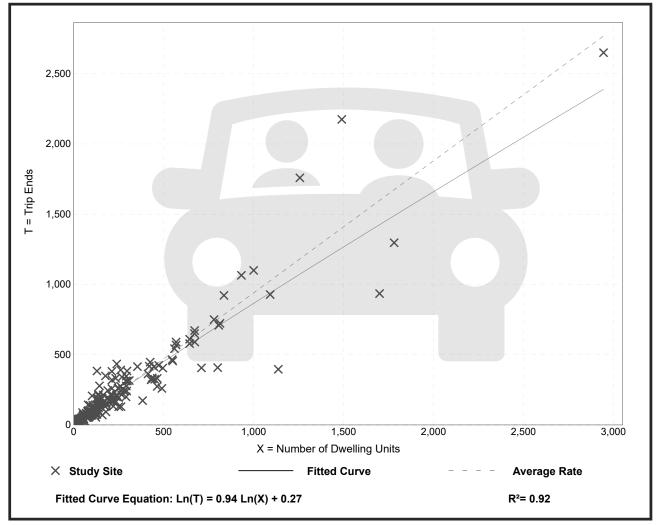
Single-Family Detached Housing (210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 208 Avg. Num. of Dwelling Units: 248

Directional Distribution: 63% entering, 37% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.94	0.35 - 2.98	0.31

Data Plot and Equation

Trip Gen Manual, 11th Edition

Institute of Transportation Engineers

SR 507 & 1st St PM Peak Hour Pipeline Volume Summations

	 	+	L->	t	-	↓	*	Ť	1	7	-	
1. The Hutch	4				20				10	6	11	2
2. Durant St Plat					4				3	2	2	
3. Alpine Estates						11	7		7	11		
Tahoma Blvd Apartments					7				3	2	5	
5. El Rey Burro					3				2	2	3	
6. The Summit At Thompson Creek					28				5	5	14	
7. Samantha Ridge					5						2	
8. Habitat for Humanity					4						3	
9. Liberty Grove					5						8	
10. 407 E Yelm Coffee											1	
	┰	+	L.	t_	+	T-		1	1	┌	†	
Totals	4	0	0	0	76	11	7	0	30	28	49	2

SR 507 & Clark Rd SE
PM Peak Hour
Pipeline Volume Summations

	-	*	-	┖	-	*		T		*	_	
1. The Hutch	1				19				1	1	10	
2. Durant St Plat					4						2	
3. Alpine Estates					11						7	
Tahoma Blvd Apartments					7						5	
5. El Rey Burro					3						3	
6. The Summit At Thompson Creek					28						14	
7. Samantha Ridge					5						2	
8. Habitat for Humanity					4						3	
9. Liberty Grove					5						8	
10. 407 E Yelm Coffee											1	
	┙	ļ.	1	t_	-	₽T	_	Ť	1	→	→	_
Totals	1	0	0	0	86	0	0	0	1	1	55	0

SR 507 & Vancil Rd SE
PM Peak Hour
Pipeline Volume Summations

	4	1	1	1	1	₽	7	1	1	-	†	
1. The Hutch	1				13				4	2	6	1
2. Durant St Plat					4						2	
3. Alpine Estates					11						7	
Tahoma Blvd Apartments					7						5	
5. El Rey Burro					3						3	
6. The Summit At Thompson Creek					28						14	
7. Samantha Ridge					5						2	
8. Habitat for Humanity					4						3	
9. Liberty Grove												
10. 407 E Yelm Coffee											1	
	₩	+	L	t_	-	┰	7	t	•	\lnot	→	
Totals	1	Λ	Λ	Λ.	75	Λ	^	Λ.	1	2	12	1

SR 507 & NE Plaza Dr PM Peak Hour Pipeline Volume Summations

	L	↓	L.	t	-		┌╸	†	•		-	
1. The Hutch	1				13						6	1
2. Durant St Plat					4						2	
3. Alpine Estates					11						7	
4. Tahoma Blvd Apartments					7						5	
5. El Rey Burro					3						3	
6. The Summit At Thompson Creek					28						14	
7. Samantha Ridge					5						2	
8. Habitat for Humanity					4						3	
9. Liberty Grove												
10. 407 E Yelm Coffee											1	
	┙	+	↳	t_	-	┰		†	•	_	→	
Totals	1	0	0	0	75	0	0	0	0	0	43	1

Vancil Rd SE & Access
PM Peak Hour
Pipeline Volume Summations

	₽	+	L	t	-	F		1	•	\neg	→	
1. The Hutch												
2. Durant St Plat												
3. Alpine Estates												
Tahoma Blvd Apartments												
5. El Rey Burro												
6. The Summit At Thompson Creek												
7. Samantha Ridge												
8. Habitat for Humanity												
9. Liberty Grove												
10. 407 E Yelm Coffee												
	↓	+	┕	t	ļ	Ţ	_	1	+	1	→	1
Totals	0	0	0	0	0	0	0	0	0	0	0	0

PM Peak Hour Forecast Intersection Volumes

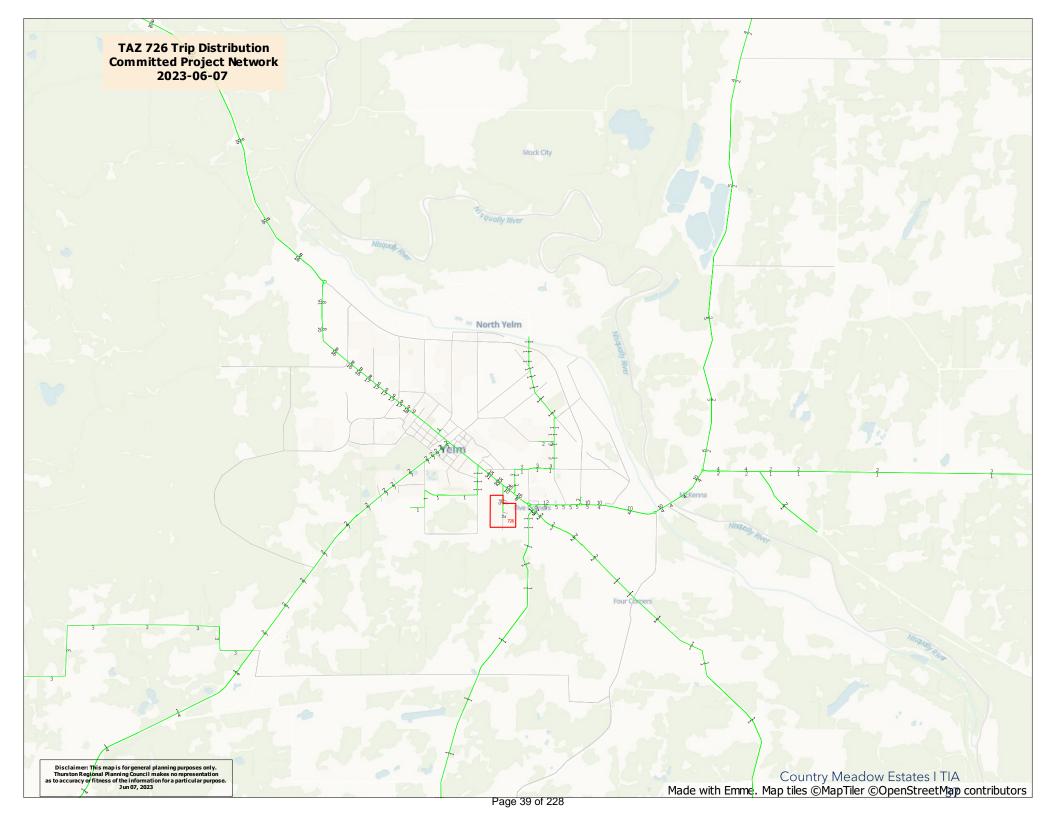
Annual Growth Rate: 1 % 2026

of Years to Horizon: 3

1. SR 507 & 1st St

	SBR	SBT	SBL	WBR	WBT	WBL	NBR	NBT	NBL	EBR	EBT	EBL
Existing	47	107	42	19	501	170	157	102	114	68	467	35
Project Trips	0	0	0	0	9	3	4	0	0	0	15	0
Pipeline	4	0	0	0	76	11	7	0	30	28	49	2
Without	52	110	43	20	592	186	169	105	147	98	530	38
With	52	110	43	20	601	189	173	105	147	98	545	38

2. SR 507 & Clark Rd SE


	SBR	SBT	SBL	WBR	WBT	WBL	NBR	NBT	NBL	EBR	EBT	EBL
Existing	12	4	8	19	811	50	31	9	10	3	767	22
Project Trips	0	0	0	0	12	1	1	0	0	0	20	0
Pipeline	1	0	0	0	86	0	0	0	1	1	55	0
Without	13	4	8	20	922	52	32	9	11	4	845	23
With	13	4	8	20	934	53	33	9	11	4	865	23

3. SR 507 & Vancil Rd SE

	SBR	SBT	SBL	WBR	WBT	WBL	NBR	NBT	NBL	EBR	EBT	EBL
Existing	29	54	54	41	583	44	73	43	163	113	537	20
Project Trips	0	0	0	0	0	15	9	0	14	23	0	0
Pipeline	1	0	0	0	75	0	0	0	4	2	43	1
Without	31	56	56	42	676	45	75	44	172	118	596	22
With	31	56	56	42	676	60	84	44	186	141	596	22

4. SR 507 & Plaza Dr

	SBR	SBT	SBL	WBR	WBT	WBL	NBR	NBT	NBL	EBR	EBT	EBL
Existing	28	2	5	34	715	106	104	4	2	9	579	30
Project Trips	2	0	0	0	13	0	0	0	0	0	8	1
Pipeline	1	0	0	0	75	0	0	0	0	0	43	1
Without	30	2	5	35	812	109	107	4	2	9	640	32
With	32	2	5	35	825	109	107	4	2	9	648	33

	٠	→	•	•	←	•	4	†	~	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	*	₽		7	₽		*	₽	
Traffic Volume (veh/h)	35	467	68	170	501	19	114	102	157	42	107	47
Future Volume (veh/h)	35	467	68	170	501	19	114	102	157	42	107	47
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.99	1.00		0.99	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1841	1811	1870	1826	1885	1870	1841	1885	1870	1885
Adj Flow Rate, veh/h	36	477	69	173	511	19	116	104	160	43	109	48
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Percent Heavy Veh, %	1	1	4	6	2	5	1	2	4	1	2	1
Cap, veh/h	67	602	485	224	737	27	155	143	219	76	210	92
Arrive On Green	0.04	0.32	0.32	0.13	0.41	0.41	0.09	0.22	0.22	0.04	0.17	0.17
Sat Flow, veh/h	1795	1885	1520	1725	1791	67	1795	659	1014	1795	1218	536
Grp Volume(v), veh/h	36	477	69	173	0	530	116	0	264	43	0	157
Grp Sat Flow(s), veh/h/ln	1795	1885	1520	1725	0	1858	1795	0	1674	1795	0	1754
Q Serve(g_s), s	1.2	14.2	2.0	6.0	0.0	14.4	3.9	0.0	9.0	1.4	0.0	5.0
Cycle Q Clear(g_c), s	1.2	14.2	2.0	6.0	0.0	14.4	3.9	0.0	9.0	1.4	0.0	5.0
Prop In Lane	1.00	17.2	1.00	1.00	0.0	0.04	1.00	0.0	0.61	1.00	0.0	0.31
Lane Grp Cap(c), veh/h	67	602	485	224	0	764	155	0	362	76	0	302
V/C Ratio(X)	0.54	0.79	0.14	0.77	0.00	0.69	0.75	0.00	0.73	0.57	0.00	0.52
Avail Cap(c_a), veh/h	785	1143	922	755	0.00	1127	785	0.00	1113	785	0.00	1166
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Upstream Filter(I)		19.1	14.9	25.9	0.00	14.9		0.00		28.9	0.00	
Uniform Delay (d), s/veh	29.1						27.4		22.4			23.1
Incr Delay (d2), s/veh	6.5	2.4	0.1	5.6	0.0	1.1	7.0	0.0	2.8	6.5	0.0	1.4
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.6	6.1	0.7	2.7	0.0	5.7	1.9	0.0	3.6	0.7	0.0	2.1
Unsig. Movement Delay, s/veh		04.5	45.4	04.5	0.0	40.0	0.4.5	2.0	05.0	05.4	0.0	0.4.5
LnGrp Delay(d), s/veh	35.6	21.5	15.1	31.5	0.0	16.0	34.5	0.0	25.3	35.4	0.0	24.5
LnGrp LOS	D	С	В	С		В	С		С	D		С
Approach Vol, veh/h		582			703			380			200	
Approach Delay, s/veh		21.6			19.9			28.1			26.9	
Approach LOS		С			В			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	12.5	24.1	9.8	15.1	6.8	29.8	7.1	17.8				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	26.9	37.3	26.9	40.9	26.9	37.3	26.9	40.9				
Max Q Clear Time (g_c+l1), s	8.0	16.2	5.9	7.0	3.2	16.4	3.4	11.0				
Green Ext Time (p_c), s	0.4	3.4	0.3	1.0	0.1	3.7	0.1	1.9				
Intersection Summary												
HCM 7th Control Delay, s/veh			22.8									
HCM 7th LOS			С									

	۶	→	•	•	•	•	4	†	~	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1→		7	1		7	4		7	1→	
Traffic Volume (veh/h)	22	767	3	50	811	19	10	9	31	8	4	12
Future Volume (veh/h)	22	767	3	50	811	19	10	9	31	8	4	12
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		1.00	0.98		0.95	0.99		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1870	1885	1885	1870	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h	23	799	3	52	845	20	10	9	32	8	4	12
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Percent Heavy Veh, %	1	2	1	1	2	1	1	1	1	1	1	1
Cap, veh/h	333	1033	4	389	1053	25	298	42	148	277	49	146
Arrive On Green	0.03	0.55	0.55	0.05	0.58	0.58	0.12	0.12	0.12	0.12	0.12	0.12
Sat Flow, veh/h	1795	1862	7	1795	1819	43	1375	349	1242	1357	407	1221
Grp Volume(v), veh/h	23	0	802	52	0	865	10	0	41	8	0	16
Grp Sat Flow(s),veh/h/ln	1795	0	1869	1795	0	1862	1375	0	1592	1357	0	1628
Q Serve(g_s), s	0.3	0.0	16.5	0.6	0.0	18.0	0.3	0.0	1.1	0.3	0.0	0.4
Cycle Q Clear(g_c), s	0.3	0.0	16.5	0.6	0.0	18.0	0.8	0.0	1.1	1.4	0.0	0.4
Prop In Lane	1.00	0.0	0.00	1.00	0.0	0.02	1.00	0.0	0.78	1.00	0.0	0.75
Lane Grp Cap(c), veh/h	333	0	1037	389	0	1078	298	0	190	277	0	194
V/C Ratio(X)	0.07	0.00	0.77	0.13	0.00	0.80	0.03	0.00	0.22	0.03	0.00	0.08
Avail Cap(c_a), veh/h	1557	0	2038	1569	0	2031	1472	0	1548	1435	0	1584
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	7.3	0.0	8.5	6.9	0.0	8.1	19.6	0.0	19.6	20.2	0.0	19.3
Incr Delay (d2), s/veh	0.1	0.0	1.3	0.2	0.0	1.4	0.0	0.0	0.6	0.0	0.0	0.2
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	0.0	5.2	0.2	0.0	5.5	0.1	0.0	0.4	0.1	0.0	0.2
Unsig. Movement Delay, s/veh		0.0	J.Z	0.2	0.0	0.0	0.1	0.0	0.4	0.1	0.0	0.2
LnGrp Delay(d), s/veh	7.4	0.0	9.8	7.1	0.0	9.6	19.7	0.0	20.2	20.3	0.0	19.5
LnGrp LOS	7. 4	0.0	3.0 A	Α	0.0	3.0 A	В	0.0	20.2 C	20.5 C	0.0	В
		825		А	917	Λ	D	51	<u> </u>	<u> </u>	24	D
Approach Vol, veh/h		9.7						20.1			19.7	
Approach Delay, s/veh					9.4							
Approach LOS		Α			Α			С			В	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.0	31.8		10.4	5.8	33.0		10.4				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	34.9	53.7		47.9	34.9	53.7		47.9				
Max Q Clear Time (g_c+I1), s	2.6	18.5		3.4	2.3	20.0		3.1				
Green Ext Time (p_c), s	0.1	7.6		0.1	0.0	8.5		0.2				
Intersection Summary												
HCM 7th Control Delay, s/veh			10.0									
HCM 7th LOS			В									

	۶	→	*	•	←	•	1	†	~	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	7	^	7	7	1		7	1	
Traffic Volume (veh/h)	20	537	113	44	583	41	163	43	73	54	54	29
Future Volume (veh/h)	20	537	113	44	583	41	163	43	73	54	54	29
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		1.00	1.00		1.00	1.00		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1841	1885	1885	1826	1885	1885	1885	1841	1885	1885	1885
Adj Flow Rate, veh/h	20	542	114	44	589	41	165	43	0	55	55	29
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Percent Heavy Veh, %	1	4	1	1	5	1	1	1	4	1	1	1
Cap, veh/h	43	702	589	79	733	639	218	380		92	150	79
Arrive On Green	0.02	0.38	0.38	0.04	0.40	0.40	0.12	0.20	0.00	0.05	0.13	0.13
Sat Flow, veh/h	1795	1841	1544	1795	1826	1592	1795	1885	0	1795	1140	601
Grp Volume(v), veh/h	20	542	114	44	589	41	165	43	0	55	0	84
Grp Sat Flow(s),veh/h/ln	1795	1841	1544	1795	1826	1592	1795	1885	0	1795	0	1741
Q Serve(g_s), s	0.6	14.5	2.8	1.3	15.9	0.9	5.0	1.0	0.0	1.7	0.0	2.5
Cycle Q Clear(g_c), s	0.6	14.5	2.8	1.3	15.9	0.9	5.0	1.0	0.0	1.7	0.0	2.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		0.35
Lane Grp Cap(c), veh/h	43	702	589	79	733	639	218	380		92	0	229
V/C Ratio(X)	0.47	0.77	0.19	0.55	0.80	0.06	0.76	0.11		0.60	0.00	0.37
Avail Cap(c_a), veh/h	209	2286	1918	337	2398	2090	818	1398		337	0	825
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	27.0	15.2	11.6	26.2	14.8	10.3	23.8	18.3	0.0	26.0	0.0	22.2
Incr Delay (d2), s/veh	7.7	1.8	0.2	5.9	2.1	0.0	5.3	0.1	0.0	6.0	0.0	1.0
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.3	5.4	8.0	0.7	5.8	0.3	2.2	0.4	0.0	8.0	0.0	1.0
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	34.7	17.0	11.7	32.1	16.9	10.3	29.1	18.4	0.0	32.0	0.0	23.2
LnGrp LOS	С	В	В	С	В	В	С	В		С		С
Approach Vol, veh/h		676			674			208			139	
Approach Delay, s/veh		16.7			17.5			26.9			26.7	
Approach LOS		В			В			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.0	25.8	11.3	11.9	5.8	27.0	7.4	15.8				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	10.5	69.5	25.5	26.5	6.5	73.5	10.5	41.5				
Max Q Clear Time (g_c+l1), s	3.3	16.5	7.0	4.5	2.6	17.9	3.7	3.0				
Green Ext Time (p_c), s	0.0	4.3	0.4	0.4	0.0	4.5	0.0	0.2				
Intersection Summary												
HCM 7th Control Delay, s/veh			19.1									
HCM 7th LOS			В									
Notes												
Unsignalized Delay for [NBR] i	s exclud	ed from c	alculation	s of the a	pproach	delay and	intersect	ion delay				

Country Meadow Estates I.syn

Synchro 12 Light Report Page 1

Intersection												
Int Delay, s/veh	2.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7	×	^	7	Y	1		Y	1	
Traffic Vol, veh/h	30	579	9	106	715	34	2	4	104	5	2	28
Future Vol, veh/h	30	579	9	106	715	34	2	4	104	5	2	28
Conflicting Peds, #/hr	1	0	1	1	0	1	1	0	1	1	0	1
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	150	-	100	150	-	160	20	-	-	220	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	98	98	98	98	98	98	98	98	98	98	98	98
Heavy Vehicles, %	1	3	1	2	3	1	1	1	2	1	1	1
Mvmt Flow	31	591	9	108	730	35	2	4	106	5	2	29
Major/Minor N	Major1			Major2			Minor1			Minor2		
Conflicting Flow All	765	0	0	601	0	0	1601	1635	593	1602	1609	732
Stage 1	-	-	_	-	-	-	653	653	-	947	947	-
Stage 2	-	-	-	-	-	-	948	982	-	655	662	-
Critical Hdwy	4.11	-	-	4.12	-	-	7.11	6.51	6.22	7.11	6.51	6.21
Critical Hdwy Stg 1	-	-	-	-	-	-	6.11	5.51	-	6.11	5.51	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.11	5.51	-	6.11	5.51	-
Follow-up Hdwy	2.209	-	-	2.218	-	-	3.509	4.009	3.318	3.509	4.009	3.309
Pot Cap-1 Maneuver	852	-	-	976	-	-	86	101	506	86	105	423
Stage 1	-	-	-	-	-	-	458	465	-	315	341	-
Stage 2	-	-	-	-	-	-	315	329	-	457	461	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	852	-	-	975	-	-	67	87	505	56	90	422
Mov Cap-2 Maneuver	-	-	-	-	-	-	67	87	-	56	90	-
Stage 1	-	-	-	-	-	-	441	448	-	303	303	-
Stage 2	-	-	-	-	-	-	259	292	-	344	444	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s/v	0.46			1.13			17.09			25.19		
HCM LOS							С			D		
Minor Lane/Major Mvm	t I	NBLn11	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR S	SBLn1	SBLn2	
Capacity (veh/h)		67	428	852	_	-	975	-	-	56	339	
HCM Lane V/C Ratio			0.257		_	_	0.111	-	-	0.092	0.09	
HCM Control Delay (s/	veh)	60.3	16.3	9.4	-	-	9.2	_	_	76.3	16.7	
HCM Lane LOS	,	F	С	A	_	-	A	-	-	F	С	
HCM 95th %tile Q(veh)		0.1	1	0.1	-	-	0.4	-	-	0.3	0.3	

	۶	→	•	•	←	•	1	†	<i>></i>	/	↓	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	7	ሻ	4		7	₽		ሻ	1•	
Traffic Volume (veh/h)	38	530	98	186	592	20	147	105	169	43	110	52
Future Volume (veh/h)	38	530	98	186	592	20	147	105	169	43	110	52
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.99	1.00		0.99	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1841	1811	1870	1826	1885	1870	1841	1885	1870	1885
Adj Flow Rate, veh/h	38	530	98	186	592	20	147	105	169	43	110	52
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	1	1	4	6	2	5	1	2	4	1	2	1
Cap, veh/h	68	645	520	235	793	27	192	138	223	73	178	84
Arrive On Green	0.04	0.34	0.34	0.14	0.44	0.44	0.11	0.22	0.22	0.04	0.15	0.15
Sat Flow, veh/h	1795	1885	1520	1725	1798	61	1795	640	1030	1795	1186	561
Grp Volume(v), veh/h	38	530	98	186	0	612	147	0	274	43	0	162
Grp Sat Flow(s),veh/h/ln	1795	1885	1520	1725	0	1859	1795	0	1671	1795	0	1747
Q Serve(g_s), s	1.4	17.5	3.1	7.1	0.0	18.7	5.4	0.0	10.5	1.6	0.0	5.9
Cycle Q Clear(g_c), s	1.4	17.5	3.1	7.1	0.0	18.7	5.4	0.0	10.5	1.6	0.0	5.9
Prop In Lane	1.00		1.00	1.00		0.03	1.00		0.62	1.00		0.32
Lane Grp Cap(c), veh/h	68	645	520	235	0	820	192	0	361	73	0	262
V/C Ratio(X)	0.56	0.82	0.19	0.79	0.00	0.75	0.76	0.00	0.76	0.59	0.00	0.62
Avail Cap(c_a), veh/h	709	1032	832	681	0	1018	709	0	1003	709	0	1049
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	32.2	20.5	15.8	28.5	0.0	15.9	29.6	0.0	25.0	32.1	0.0	27.1
Incr Delay (d2), s/veh	7.1	2.9	0.2	5.8	0.0	2.4	6.2	0.0	3.3	7.2	0.0	2.4
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.7	7.8	1.0	3.2	0.0	7.7	2.6	0.0	4.3	8.0	0.0	2.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	39.4	23.5	15.9	34.3	0.0	18.2	35.7	0.0	28.3	39.3	0.0	29.5
LnGrp LOS	D	С	В	С		В	D		С	D		С
Approach Vol, veh/h		666			798			421			205	
Approach Delay, s/veh		23.3			22.0			30.9			31.6	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	13.8	27.8	11.8	14.7	7.1	34.5	7.3	19.2				,
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	26.9	37.3	26.9	40.9	26.9	37.3	26.9	40.9				
Max Q Clear Time (g_c+l1), s	9.1	19.5	7.4	7.9	3.4	20.7	3.6	12.5				
Green Ext Time (p_c), s	0.5	3.8	0.4	1.0	0.1	4.0	0.1	1.9				
Intersection Summary												
HCM 7th Control Delay, s/veh			25.1									
HCM 7th LOS			С									

	۶	→	•	•	—	•	•	†	<i>></i>	/	Ţ	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1>		ሻ	ĵ∍		ሻ	1>		ሻ	1>	
Traffic Volume (veh/h)	23	845	4	52	922	20	11	9	32	8	4	13
Future Volume (veh/h)	23	845	4	52	922	20	11	9	32	8	4	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		1.00	0.97		0.95	0.98		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1870	1885	1885	1870	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h	23	845	4	52	922	20	11	9	32	8	4	13
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	1	2	1	1	2	1	1	1	1	1	1	1
Cap, veh/h	311	1095	5	385	1116	24	272	39	137	252	42	137
Arrive On Green	0.03	0.59	0.59	0.05	0.61	0.61	0.11	0.11	0.11	0.11	0.11	0.11
Sat Flow, veh/h	1795	1860	9	1795	1823	40	1371	349	1240	1356	381	1240
Grp Volume(v), veh/h	23	0	849	52	0	942	11	0	41	8	0	17
Grp Sat Flow(s),veh/h/ln	1795	0	1868	1795	0	1863	1371	0	1589	1356	0	1621
Q Serve(g_s), s	0.3	0.0	18.5	0.6	0.0	21.4	0.4	0.0	1.3	0.3	0.0	0.5
Cycle Q Clear(g_c), s	0.3	0.0	18.5	0.6	0.0	21.4	0.9	0.0	1.3	1.6	0.0	0.5
Prop In Lane	1.00		0.00	1.00		0.02	1.00		0.78	1.00		0.76
Lane Grp Cap(c), veh/h	311	0	1100	385	0	1140	272	0	176	252	0	179
V/C Ratio(X)	0.07	0.00	0.77	0.14	0.00	0.83	0.04	0.00	0.23	0.03	0.00	0.09
Avail Cap(c_a), veh/h	1425	0	1862	1457	0	1857	1340	0	1412	1307	0	1441
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	7.9	0.0	8.4	7.0	0.0	8.2	21.9	0.0	21.9	22.6	0.0	21.5
Incr Delay (d2), s/veh	0.1	0.0	1.2	0.2	0.0	1.7	0.1	0.0	0.7	0.1	0.0	0.2
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	0.0	5.8	0.2	0.0	6.5	0.1	0.0	0.5	0.1	0.0	0.2
Unsig. Movement Delay, s/veh		0.0	0.5	7.0	0.0	0.0	00.0	0.0	00.0	00.0	0.0	04.0
LnGrp Delay(d), s/veh	8.0	0.0	9.5	7.2	0.0	9.9	22.0	0.0	22.6	22.6	0.0	21.8
LnGrp LOS	А		А	А		А	С		С	С		С
Approach Vol, veh/h		872			994			52			25	
Approach Delay, s/veh		9.5			9.7			22.4			22.1	
Approach LOS		Α			Α			С			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.2	36.2		10.5	6.0	37.5		10.5				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	34.9	53.7		47.9	34.9	53.7		47.9				
Max Q Clear Time (g_c+I1), s	2.6	20.5		3.6	2.3	23.4		3.3				
Green Ext Time (p_c), s	0.1	8.2		0.1	0.0	9.6		0.2				
Intersection Summary												
HCM 7th Control Delay, s/veh			10.1	 _	 _	 _						
HCM 7th LOS			В									

	۶	→	•	•	—	•	•	1	<i>></i>	/	↓	✓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	Ĭ		7	¥		7	7	ĵ»		7	- ↑	
Traffic Volume (veh/h)	22	596	118	45	676	42	172	44	75	56	56	31
Future Volume (veh/h)	22	596	118	45	676	42	172	44	75	56	56	31
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		1.00	1.00		1.00	1.00		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1841	1885	1885	1826	1885	1885	1885	1841	1885	1885	1885
Adj Flow Rate, veh/h	22	596	118	45	676	42	172	44	0	56	56	31
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	1	4	1	1	5	1	1	1	4	1	1	1
Cap, veh/h	45	785	659	77	811	707	223	377		88	140	77
Arrive On Green	0.03	0.43	0.43	0.04	0.44	0.44	0.12	0.20	0.00	0.05	0.12	0.12
Sat Flow, veh/h	1795	1841	1546	1795	1826	1592	1795	1885	0	1795	1117	619
Grp Volume(v), veh/h	22	596	118	45	676	42	172	44	0	56	0	87
Grp Sat Flow(s),veh/h/ln	1795	1841	1546	1795	1826	1592	1795	1885	0	1795	0	1736
Q Serve(g_s), s	0.8	17.6	3.0	1.6	20.9	1.0	5.9	1.2	0.0	2.0	0.0	3.0
Cycle Q Clear(g_c), s	0.8	17.6	3.0	1.6	20.9	1.0	5.9	1.2	0.0	2.0	0.0	3.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		0.36
Lane Grp Cap(c), veh/h	45	785	659	77	811	707	223	377		88	0	217
V/C Ratio(X)	0.48	0.76	0.18	0.58	0.83	0.06	0.77	0.12		0.63	0.00	0.40
Avail Cap(c_a), veh/h	183	2001	1681	295	2099	1830	716	1223		295	0	719
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	30.8	15.6	11.4	30.0	15.7	10.1	27.1	21.0	0.0	29.8	0.0	25.8
Incr Delay (d2), s/veh	7.8	1.5	0.1	6.8	2.3	0.0	5.6	0.1	0.0	7.3	0.0	1.2
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	6.6	0.9	0.8	7.8	0.3	2.7	0.5	0.0	1.0	0.0	1.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	38.5	17.1	11.5	36.8	18.0	10.2	32.7	21.1	0.0	37.1	0.0	27.0
LnGrp LOS	D	В	В	D	В	В	С	С		D		С
Approach Vol, veh/h		736			763			216			143	
Approach Delay, s/veh		16.8			18.7			30.3			30.9	
Approach LOS		В			В			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.3	31.8	12.4	12.5	6.1	32.9	7.7	17.3				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	10.5	69.5	25.5	26.5	6.5	73.5	10.5	41.5				
Max Q Clear Time (g_c+l1), s	3.6	19.6	7.9	5.0	2.8	22.9	4.0	3.2				
Green Ext Time (p_c), s	0.0	4.9	0.4	0.4	0.0	5.5	0.0	0.2				
Intersection Summary												
HCM 7th Control Delay, s/veh			20.3									
HCM 7th LOS			20.3 C									
Notes												

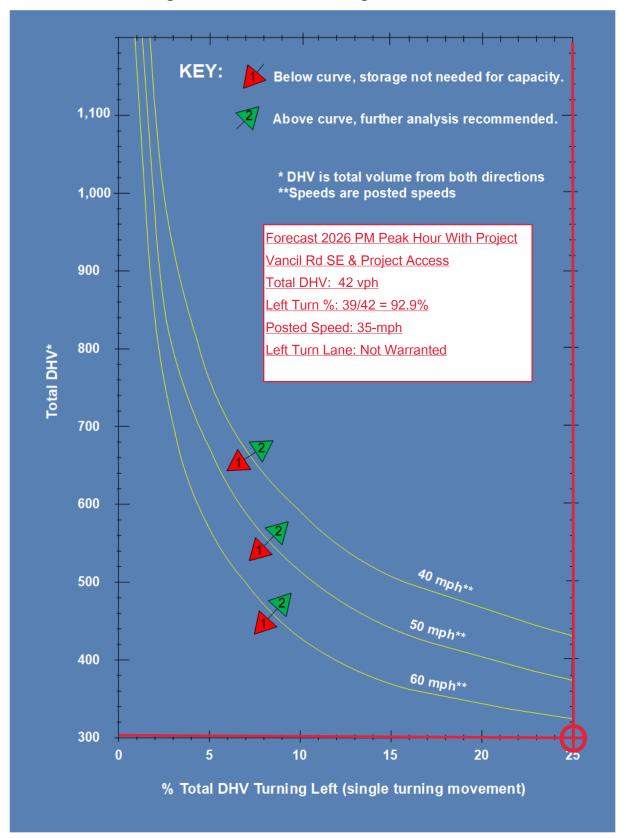
Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

Intersection												
Int Delay, s/veh	2.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥		7	ሻ		7	ሻ	- F		ሻ	ĵ.	
Traffic Vol, veh/h	32	640	9	109	812	35	2	4	107	5	2	30
Future Vol, veh/h	32	640	9	109	812	35	2	4	107	5	2	30
Conflicting Peds, #/hr	1	0	1	1	0	1	1	0	1	1	0	1
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	150	-	100	150	-	160	20	-	-	220	-	-
Veh in Median Storage	e,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	1	3	1	2	3	1	1	1	2	1	1	1
Mvmt Flow	32	640	9	109	812	35	2	4	107	5	2	30
Major/Minor	Major1		N	Major2			Minor1		1	Minor2		
Conflicting Flow All	848	0	0	650	0	0	1737	1771	642	1738	1745	814
Stage 1	-	-	-	-	-	-	705	705	-	1031	1031	-
Stage 2	_	_	_	-	_	-	1032	1066	_	707	714	-
Critical Hdwy	4.11	-	-	4.12	-	-	7.11	6.51	6.22	7.11	6.51	6.21
Critical Hdwy Stg 1	-	-	-	-	-	-	6.11	5.51	-	6.11	5.51	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.11	5.51	-	6.11	5.51	-
Follow-up Hdwy	2.209	-	-	2.218	-	-	3.509	4.009	3.318	3.509	4.009	3.309
Pot Cap-1 Maneuver	794	-	-	936	-	-	69	84	474	69	87	379
Stage 1	-	-	-	-	-	-	429	441	-	283	312	-
Stage 2	-	-	-	-	-	-	282	300	-	428	436	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	793	-	-	935	-	-	52	71	473	43	73	379
Mov Cap-2 Maneuver	-	-	-	-	-	-	52	71	-	43	73	-
Stage 1	-	-	-	-	-	-	411	422	-	271	275	-
Stage 2	-	-	-	-	-	-	228	265	-	314	418	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s/v				1.07			18.78			29.39		
HCM LOS	v 0. 4 0			1.07			C			29.39 D		
TIOWI LOO							U			U		
N. 1 (0.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		UDI 4	UDL C	ED!	EDT		14/51	14/57	14/55	2	0DL C	
Minor Lane/Major Mvm	nt l	VBLn11		EBL	EBT	EBR	WBL	WBT		SBLn1		
Capacity (veh/h)		52	393	793	-	-	935	-	-	43	301	
HCM Lane V/C Ratio		0.038		0.04	-		0.117	-		0.117		
HCM Control Delay (s/	veh)	76.4	17.7	9.7	-	-	9.4	-	-	99.8	18.4	
HCM Lane LOS		F	С	A	-	-	A	-	-	F	С	
HCM 95th %tile Q(veh))	0.1	1.1	0.1	-	-	0.4	-	-	0.4	0.4	

	۶	→	•	•	←	•	•	†	<i>></i>	/	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		†	7	ሻ	4		7	₽		ሻ	₽	
Traffic Volume (veh/h)	38	545	98	189	601	20	147	105	173	43	110	52
Future Volume (veh/h)	38	545	98	189	601	20	147	105	173	43	110	52
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		0.99	1.00		0.99	1.00		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1841	1811	1870	1826	1885	1870	1841	1885	1870	1885
Adj Flow Rate, veh/h	38	545	98	189	601	20	147	105	173	43	110	52
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	1	1	4	6	2	5	1	2	4	1	2	1
Cap, veh/h	67	656	529	238	807	27	192	137	226	73	179	85
Arrive On Green	0.04	0.35	0.35	0.14	0.45	0.45	0.11	0.22	0.22	0.04	0.15	0.15
Sat Flow, veh/h	1795	1885	1520	1725	1799	60	1795	630	1039	1795	1186	561
Grp Volume(v), veh/h	38	545	98	189	0	621	147	0	278	43	0	162
Grp Sat Flow(s),veh/h/ln	1795	1885	1520	1725	0	1859	1795	0	1669	1795	0	1747
Q Serve(g_s), s	1.5	18.6	3.2	7.4	0.0	19.4	5.6	0.0	11.0	1.7	0.0	6.1
Cycle Q Clear(g_c), s	1.5	18.6	3.2	7.4	0.0	19.4	5.6	0.0	11.0	1.7	0.0	6.1
Prop In Lane	1.00		1.00	1.00		0.03	1.00		0.62	1.00		0.32
Lane Grp Cap(c), veh/h	67	656	529	238	0	834	192	0	362	73	0	263
V/C Ratio(X)	0.57	0.83	0.19	0.79	0.00	0.74	0.77	0.00	0.77	0.59	0.00	0.62
Avail Cap(c_a), veh/h	688	1002	808	661	0	988	688	0	973	688	0	1019
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	33.2	21.0	15.9	29.3	0.0	16.0	30.5	0.0	25.8	33.1	0.0	27.9
Incr Delay (d2), s/veh	7.4	3.7	0.2	5.9	0.0	2.6	6.3	0.0	3.4	7.5	0.0	2.3
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	8.0	8.4	1.1	3.4	0.0	8.1	2.7	0.0	4.5	0.9	0.0	2.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	40.6	24.6	16.1	35.2	0.0	18.6	36.8	0.0	29.2	40.6	0.0	30.2
LnGrp LOS	D	С	В	D		В	D		С	D		С
Approach Vol, veh/h		681			810			425			205	
Approach Delay, s/veh		24.3			22.5			31.8			32.4	
Approach LOS		С			С			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	14.2	28.9	12.0	15.1	7.1	36.0	7.3	19.7				_
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	26.9	37.3	26.9	40.9	26.9	37.3	26.9	40.9				
Max Q Clear Time (g_c+l1), s	9.4	20.6	7.6	8.1	3.5	21.4	3.7	13.0				
Green Ext Time (p_c), s	0.5	3.8	0.4	1.0	0.1	4.0	0.1	1.9				
Intersection Summary												
HCM 7th Control Delay, s/veh			25.9									
HCM 7th LOS			С									

	۶	→	•	•	←	4	1	†	<i>></i>	/	+	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1•		ሻ	4		7	₽		ሻ	₽	
Traffic Volume (veh/h)	23	865	4	53	934	20	11	9	33	8	4	13
Future Volume (veh/h)	23	865	4	53	934	20	11	9	33	8	4	13
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		1.00	0.97		0.95	0.98		0.97
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1870	1885	1885	1870	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h	23	865	4	53	934	20	11	9	33	8	4	13
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	1	2	1	1	2	1	1	1	1	1	1	1
Cap, veh/h	307	1103	5	376	1125	24	268	37	136	247	42	135
Arrive On Green	0.03	0.59	0.59	0.05	0.62	0.62	0.11	0.11	0.11	0.11	0.11	0.11
Sat Flow, veh/h	1795	1860	9	1795	1824	39	1371	340	1247	1354	381	1239
Grp Volume(v), veh/h	23	0	869	53	0	954	11	0	42	8	0	17
Grp Sat Flow(s),veh/h/ln	1795	0	1869	1795	0	1863	1371	0	1587	1354	0	1621
Q Serve(g_s), s	0.3	0.0	19.3	0.6	0.0	22.0	0.4	0.0	1.3	0.3	0.0	0.5
Cycle Q Clear(g_c), s	0.3	0.0	19.3	0.6	0.0	22.0	0.9	0.0	1.3	1.6	0.0	0.5
Prop In Lane	1.00		0.00	1.00		0.02	1.00		0.79	1.00		0.76
Lane Grp Cap(c), veh/h	307	0	1108	376	0	1149	268	0	173	247	0	177
V/C Ratio(X)	0.07	0.00	0.78	0.14	0.00	0.83	0.04	0.00	0.24	0.03	0.00	0.10
Avail Cap(c_a), veh/h	1406	0	1836	1432	0	1831	1320	0	1391	1286	0	1420
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	8.1	0.0	8.5	7.3	0.0	8.2	22.3	0.0	22.3	23.0	0.0	21.9
Incr Delay (d2), s/veh	0.1	0.0	1.3	0.2	0.0	1.9	0.1	0.0	0.7	0.1	0.0	0.2
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.1	0.0	6.1	0.2	0.0	6.8	0.1	0.0	0.5	0.1	0.0	0.2
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	8.2	0.0	9.7	7.5	0.0	10.1	22.4	0.0	23.0	23.1	0.0	22.1
LnGrp LOS	Α		Α	Α		В	С		С	С		С
Approach Vol, veh/h		892			1007			53			25	
Approach Delay, s/veh		9.7			9.9			22.9			22.4	
Approach LOS		Α			Α			С			С	
Timer - Assigned Phs	1	2		4	5	6		8				
Phs Duration (G+Y+Rc), s	7.3	36.9		10.5	6.0	38.2		10.5				
Change Period (Y+Rc), s	4.5	4.5		4.5	4.5	4.5		4.5				
Max Green Setting (Gmax), s	34.9	53.7		47.9	34.9	53.7		47.9				
Max Q Clear Time (g_c+l1), s	2.6	21.3		3.6	2.3	24.0		3.3				
Green Ext Time (p_c), s	0.1	8.5		0.1	0.0	9.7		0.3				
Intersection Summary												
HCM 7th Control Delay, s/veh			10.3									
HCM 7th LOS			В									

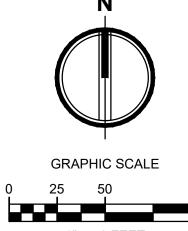
	۶	→	•	•	←	•	•	1	/	/	+	-√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ħ	^	7	ሻ	^	7	7	ĵ₃		ሻ	₽	
Traffic Volume (veh/h)	22	596	141	60	676	42	186	44	84	56	56	31
Future Volume (veh/h)	22	596	141	60	676	42	186	44	84	56	56	31
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Lane Width Adj.	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped-Bike Adj(A_pbT)	1.00		0.97	1.00		1.00	1.00		1.00	1.00		0.95
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1841	1885	1885	1826	1885	1885	1885	1841	1885	1885	1885
Adj Flow Rate, veh/h	22	596	141	60	676	42	186	44	0	56	56	31
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	1	4	1	1	5	1	1	1	4	1	1	1
Cap, veh/h	45	767	645	91	808	705	239	392		88	138	77
Arrive On Green	0.03	0.42	0.42	0.05	0.44	0.44	0.13	0.21	0.00	0.05	0.12	0.12
Sat Flow, veh/h	1795	1841	1546	1795	1826	1592	1795	1885	0	1795	1117	619
Grp Volume(v), veh/h	22	596	141	60	676	42	186	44	0	56	0	87
Grp Sat Flow(s),veh/h/ln	1795	1841	1546	1795	1826	1592	1795	1885	0	1795	0	1736
Q Serve(g_s), s	0.8	18.2	3.8	2.1	21.4	1.0	6.5	1.2	0.0	2.0	0.0	3.0
Cycle Q Clear(g_c), s	8.0	18.2	3.8	2.1	21.4	1.0	6.5	1.2	0.0	2.0	0.0	3.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.00	1.00		0.36
Lane Grp Cap(c), veh/h	45	767	645	91	808	705	239	392		88	0	215
V/C Ratio(X)	0.49	0.78	0.22	0.66	0.84	0.06	0.78	0.11		0.64	0.00	0.40
Avail Cap(c_a), veh/h	179	1958	1645	289	2054	1791	701	1198		289	0	704
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	31.4	16.4	12.2	30.5	16.1	10.4	27.4	21.0	0.0	30.5	0.0	26.4
Incr Delay (d2), s/veh	7.9	1.7	0.2	7.8	2.4	0.0	5.5	0.1	0.0	7.5	0.0	1.2
Initial Q Delay(d3), s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	0.4	6.9	1.2	1.1	8.1	0.3	3.0	0.5	0.0	1.0	0.0	1.3
Unsig. Movement Delay, s/veh												
LnGrp Delay(d), s/veh	39.3	18.2	12.4	38.3	18.5	10.5	32.9	21.1	0.0	38.0	0.0	27.6
LnGrp LOS	D	В	В	D	В	В	С	С		D		С
Approach Vol, veh/h		759			778			230			143	
Approach Delay, s/veh		17.7			19.6			30.6			31.7	
Approach LOS		В			В			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	7.8	31.7	13.2	12.6	6.1	33.4	7.7	18.1				
Change Period (Y+Rc), s	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5				
Max Green Setting (Gmax), s	10.5	69.5	25.5	26.5	6.5	73.5	10.5	41.5				
Max Q Clear Time (g_c+l1), s	4.1	20.2	8.5	5.0	2.8	23.4	4.0	3.2				
Green Ext Time (p_c), s	0.0	5.0	0.4	0.4	0.0	5.5	0.0	0.2				
Intersection Summary												
HCM 7th Control Delay, s/veh			21.1									
HCM 7th LOS			С									
Notes												

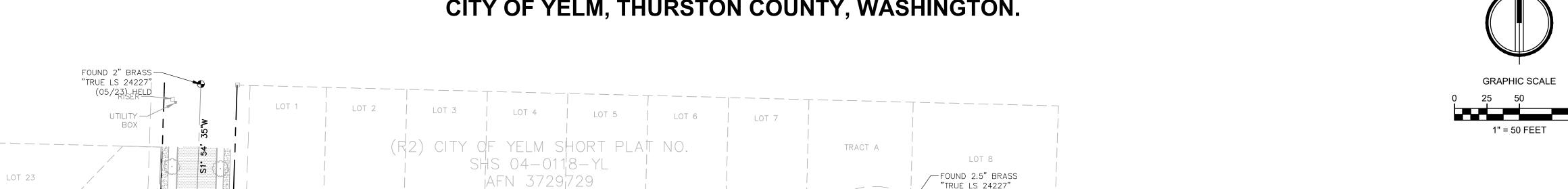

Unsignalized Delay for [NBR] is excluded from calculations of the approach delay and intersection delay.

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	^	7		†	7	<u>ነ</u>	₽			₽	
Traffic Vol, veh/h	33	648	9	109	825	35	2	4	107	5	2	32
Future Vol, veh/h	33	648	9	109	825	35	2	4	107	5	2	32
Conflicting Peds, #/hr	1	0	1	1	0	1	1	0	1	1	0	1
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	150	-	100	150	-	160	20	-	-	220	-	-
Veh in Median Storage	,# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	100	100	100	100	100	100	100	100	100	100	100	100
Heavy Vehicles, %	1	3	1	2	3	1	1	1	2	1	1	1
Mvmt Flow	33	648	9	109	825	35	2	4	107	5	2	32
Major/Minor I	Major1		ı	Major2		I	Minor1		ı	Minor2		
Conflicting Flow All	861	0	0	658	0	0	1760	1794	650	1761	1768	827
Stage 1	-	-	-	-	-	-	715	715	-	1044	1044	-
Stage 2	-	-	-	-	-	-	1045	1079	-	717	724	-
Critical Hdwy	4.11	-	-	4.12	-	-	7.11	6.51	6.22	7.11	6.51	6.21
Critical Hdwy Stg 1	-	-	-	-	-	-	6.11	5.51	-	6.11	5.51	-
Critical Hdwy Stg 2	-	-	-	-	-	-	6.11	5.51	-	6.11	5.51	-
Follow-up Hdwy	2.209	-	-	2.218	-	-	3.509	4.009	3.318	3.509	4.009	3.309
Pot Cap-1 Maneuver	785	-	-	930	-	-	66	81	469	66	84	373
Stage 1	-	-	-	-	-	-	423	436	-	278	307	-
Stage 2	-	-	-	-	-	-	278	296	-	422	432	-
Platoon blocked, %		-	-		-	-						
Mov Cap-1 Maneuver	784	-	-	929	-	-	50	68	468	41	71	372
Mov Cap-2 Maneuver	-	-	-	-	-	-	50	68	-	41	71	-
Stage 1	-	-	-	-	-	-	405	417	-	266	271	-
Stage 2	-	-	-	-	-	-	222	261	-	309	413	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s/v	v 0.47			1.06			19.11			29.67		
HCM LOS							С			D		
Minor Lane/Major Mvm	ıt l	NBLn11	NBLn2	EBL	EBT	EBR	WBL	WBT	WBR	SBLn1	SBLn2	
Capacity (veh/h)		50	387	784	-	-	929	-	-	41	298	
HCM Lane V/C Ratio			0.287		-	-	0.117	-	-	0.122		
HCM Control Delay (s/	veh)	80	18	9.8	-	-	9.4	-		104.7	18.6	
HCM Lane LOS	,	F	С	Α	-	-	Α	-	-	F	С	
HCM 95th %tile Q(veh)		0.1	1.2	0.1	-	-	0.4	-	-	0.4	0.4	

Intersection						
Int Delay, s/veh	7.2					
•		WED	NDT	NEE	ODI	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		₽			4
Traffic Vol, veh/h	0	23	2	0	38	2
Future Vol, veh/h	0	23	2	0	38	2
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	-	-
Veh in Median Storage	e, # 0	-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	25	2	0	41	2
						_
		_		_		
	Minor1		//ajor1		Major2	
Conflicting Flow All	87	2	0	0	2	0
Stage 1	2	-	-	-	-	-
Stage 2	85	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	_	_	-	-
Follow-up Hdwy	3.518	3.318	-	_	2.218	-
Pot Cap-1 Maneuver	914	1082	_	_	1620	_
Stage 1	1021	-	_	_	-	_
Stage 2	939	_	_	_	_	_
Platoon blocked, %	303		_	_		_
Mov Cap-1 Maneuver	891	1082	-	_	1620	_
Mov Cap-1 Maneuver	891	1002	-	•	1020	•
•	1021	-	-	-	-	-
Stage 1		-	-	-	-	-
Stage 2	915	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s/	v 8.41		0		6.92	
HCM LOS	Α				0.02	
110111 200	, ,					
Minor Lane/Major Mvm	nt	NBT	NBRV	WBLn1	SBL	SBT
Capacity (veh/h)		-	-	1082	1620	-
HCM Lane V/C Ratio		-	-	0.023	0.025	-
HCM Control Delay (s/	veh)	-	-	8.4	7.3	0
HCM Lane LOS		-	-	Α	Α	Α
HCM 95th %tile Q(veh	1	_	_		0.1	_

Chapter 1310 Intersections


Exhibit 1310-9 Left-Turn Storage Guidelines: Two-Lane, Unsignalized



COUNTRY MEADOWS ESTATES PHASE 1 PRELIMINARY PLAT

A PORTION OF THE NE 1/4 OF THE SE 1/4 OF SEC. 30, TWN. 17 N., RGE. 02 E., W.M., CITY OF YELM, THURSTON COUNTY, WASHINGTON.

STATISTICS									
SITE AREA	428,902 (9.84 AC)								
ZONING	R-6								
DENSITY	6 DU/AC								
PROPOSED LOTS	59 (59.1 MAKE 59) (20) - 50'± WIDE LOTS								
	(40) - 40'± WIDE LOTS								
OPEN SPACE REQUIRED	21,780 SF (0.50 AC) (5% GROSS SITE AREA MIN.)								
OPEN SPACE SHOWN (TRACT C)	23,942 SF (0.54 AC)								

LOT SETBACK	(S - SINGLE FAMILY
FRONT YARD	15 FT
SIDE YARD	5 FT 15 FT (CORNER LOT)
REAR YARD	25 FT

TRACT IDENTIFICATION					
ITEM SQUARE FEET ACRES					
TRACT 'A' - OPEN SPACE	2,569	0.06			
TRACT 'B' - OPEN SPACE	1,278	0.03			
TRACT 'C' - RECREATIONAL SPACE AND STORM	24,401	0.56			
TRACT 'D' - PEDESTRIAN ACCESS	2,002	0.05			
TRACT 'E' - PEDESTRIAN ACCESS	1,000	0.02			
TRACT 'F' - FUTURE ROW DEDICATION	29,934	0.69			

STATISTICS		
SITE AREA	428,902 (9.84 AC)	
ZONING	R-6	
DENSITY	6 DU/AC	
PROPOSED LOTS	59 (59.1 MAKE 59) - (20) - 50'± WIDE LOTS (40) - 40'± WIDE LOTS	
OPEN SPACE REQUIRED	21,780 SF (0.50 AC) (5% GROSS SITE AREA MIN.)	
ODEN SDACE SHOWN (TDACT C)	22 042 SE (0.54 AC)	

TRACT IDENTIFICATION					
ITEM SQUARE FEET ACRES					
TRACT 'A' - OPEN SPACE	2,569	0.06			
TRACT 'B' - OPEN SPACE	1,278	0.03			
TRACT 'C' - RECREATIONAL SPACE AND STORM	24,401	0.56			
TRACT 'D' - PEDESTRIAN ACCESS	2,002	0.05			
TRACT 'E' - PEDESTRIAN ACCESS	1,000	0.02			

2215 North 30th Street, Suite 300 Tacoma, WA 98403

COUNTRY

MEADOWS ESTATES

PHASE 1

PRELIMINARY PLAT

COPPER RIDGE LLC

P.O.BOX 73790 PUYALLUP, WA 98373

KURT WILSON / EVAN MANN

2230251.10

PRELIMINARY

PLAT

JULY 2023

Project Title:

<u>Project No.</u>

Issue Set & Date:

PLAT MAP

Designed by: Drawn by:

Checked by:

<u>Sheet No.</u>

APPLICATION #999???

3 of ? Sheets

"TRUE LS 24227" (05/23)FOUND 2" BRASS—"TRUE LS 24227" N1* 36' 42"E— (MEAS'D) 17.03' (17.00 R2) <u>—</u> FOUND 2.5" BRASS
"TRUE LS 24227" 22730410800 (05/23)523.09'(MEAS'D) (523.16 R2) —\$1° 56' 35"W 27.99'(MEAS'D)(28.00 R2) ALEXANDER VANCIL CT SE "TRUE LS 24227" 59 6419 (05/23) HELD ළ 6 |ජූ 4013 5008 <u>|</u>\$ 4005 <u>l</u>≜ 4007 5019 | 4017 AHBL #101— NAIL AND WASHER N: 589396.7090 58 6344 E: 1116949.5130 ELEV: 360.56 COUNTRY MEADOWS ESTATES PHASE 2 PRELIMINARY PLAT S.F. (NOT APPROVED) PALOUSE AVE SE 6340 185.98' (MEAS'D) 15 원 4000 원 14 5000 S.F. S.F. 22730410000 _"AUTUMN HILL" 6250 N68° 59' 29"E-TRACT A 15+00 ROAD C R=200.00' TRACT C RECREATIONAL SPACE 22 8 23 8 4000 8 S.F. S.F. 24 000 4000 5 S.F. N: 589208.7900 25 81 4000 \$1 AND **STORM** 24401 S.F. 26 4914 S.F. E:1116944.7960 g 4000 S ELEV: 360.59 - TRACT B **OPEN SPACE** 5058 <u>128.</u>41' — **ROW DEDICATION** 10' ROW DEDICATION~ 6715 S.F. 5055 S.F.— 4000 5 15 32 5000 S.F. 31 8 | 4000 6 | S.F. 22730420100 **52** 6315 S.F. CAMPBELL 22730410100 KABUNUCK S.F. PLANTER — ¹⁰¹⁺⁰⁰ TRACT E ─ 102+00 5851 S.F. R45.00' 4488 38 8 39 8 40 8 4160 8 4160 8 4160 8 41 51 5200 51 1 42 51 5200 51 S.F. 43 5200 S.F. 4655 44 5200 S.F. 45 51 46 5 S.F. S.F. 6923 22730410200 BROWN EDGE OF GRAVEL TRACT F **FUTURE ROW DEDICATION** 646.93' (CALC'D) 647.09' (R1) EDGE OF GRAVEL FENCE CROSSES PROPERTY LINE HERE-22730420500 KIRKHAM

Country Meadows Estates Phase 1 Staff Report Supplement **Exhibit B: Gopher Report**

Knowledge, Experience, Results

DATE:

July 20, 2021

Submitted To:

Glenn Schorno

From:

Gary Cooper, Local Planning Solutions

Subject:

Mazama Pocket Gopher Survey Findings

This report has been completed following the Thurston County approved protocols for determining the presence of Pocket Gophers. Conclusions made in this report are based on two site visits conducted at the required intervals as well as data research from the Thurston County Geodata website and the Washington Department of Fish and Wildlife Priority Habitats and Species (PHS) database. Maps and summary reports obtained from both the Geodata and PHS sites are included with this report.

Survey Findings

No Mazama Gopher activity was observed on the property.

Property Information

Owners:

G.E.S. Land, LLC

Site Address:

None

Parcel Number:

22730410300

Parcel Size:

10 acres

Field Visit Dates:

June 17, 2021

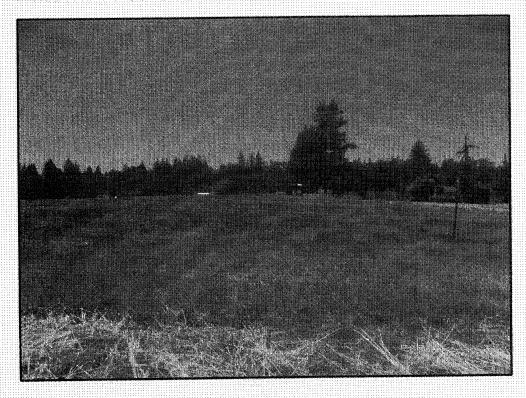

July 19, 2021

Photo 1: Property aerial

Photo 2: Photo taken from southwest corner

Thurston Geodata Review

A property search on the Thurston Geodata indicates that this parcel is comprised of Spanaway gravelly sandy loam 0-3% (#110), which is categorized as "More Preferred," and Spanaway stony sandy loam 0-3% (#112), which is categorized as "Less Preferred."

Photo 3: Gopher Soils Indicator Map

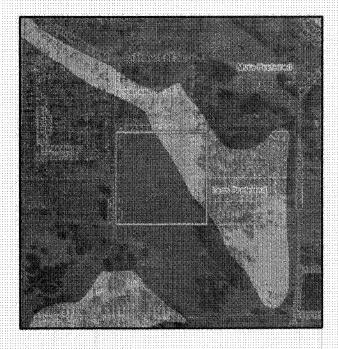
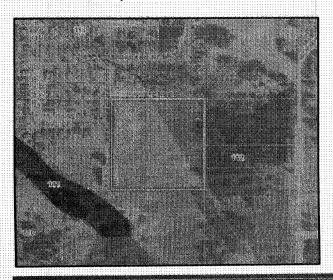
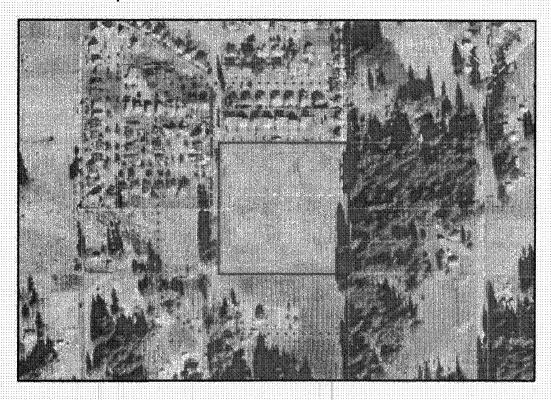



Photo 4: Soils Map



Priority Habitats and Species Review

A search of the Washington Department of Fish and Wildlife's (WDFW) Priority Habitats and Species (PHS) database did not indicate an occurrence of the Mazama Pocket Gopher within 300 feet of the property. A printout of PHS report for this area is included as an attachment.

Photo 5: PHS Report Area

Site Visit #1

The initial site visit was conducted on June 17, 2021. The parcel contains a single-family residence. Visibility was excellent. The site has numerous active mole mounds, but no gopher mounds were observed.

No Mazama Pocket Gopher mounds were observed on the parcel.

Site Visit #2

The second site visit was conducted on July 19, 2021, again following the County's protocol. As with the initial survey, numerous mole mounds were detected, but no gopher mounds were observed.

Photo 6: 1st Site Visit - GPS-tracked survey route

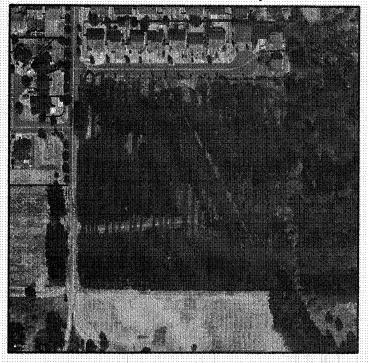


Photo 7: 2nd Site Visit - GPS-tracked survey route

Conclusion

I have followed the protocols established by Thurston County to survey this property. Based on the results of 2 field visits, I conclude that there is presently <u>no indication</u> that the property is inhabited by the Mazama Pocket Gopher.

Signed:

Harry Coepe Gary Cooper Local Planning Solutions

Date:

Data for Parcel No. 22730410300

Owner(s): GES LAND LLC

GeoData Center

Ground Water Sensitive Areas: DNR Natural Heritage Data:

Address: 17835 STATE ROUTE 507 SE City: YELM State: WA. 98597 Site Address: Site City: Site Zip: Section: S30172E Abbreviated Legal: Section 30 Township 17 Range 2E NW NE SE N & E OF S LATERAL DITCH Usecode: 91 Tax Code Area: 221 Taxable: Yes Annual Tax: **View Property Taxes for Parcel Property Type:** LND **Total Acres:** 10 Land Value: View Assessor's Data for Parcel **Building Value:** View Assessor's Data for Parcel **Total Value:** View Assessor's Data for Parcel Current Use: **Exemptions:** None Wetlands: Unknown Flood Zone: OUT Flood of 1999: Unknown Winter Flooding of 1996: Unknown High Groundwater Flood Hazards: Unknown Zoning: RR1/5, Rural Residential Commissioner District: Gary Edwards - District 2 Historic Site: No Permitting Jurisdiction: COUNTY Jurisdiction of Influence: YELMUGA No Shooting Zone: No Animal Control: Ordinance No. 12989. Contact Animal Services (360-352-2510). Weed Containment Zone: No Landslide Hazard Review Area - Slope A: Unknown Landslide Hazard Review Area - Slope B: Unknown Not mapped by GeoData Landslide Hazard Review Area - Slope C, D, E:

No

Unknown

Mazama Pocket Gopher Indicator Soils: Yes - Check with Permit Assistance Center

Mazama Pocket Gopher Soils Preference:

Mazama Pocket Gopher Soils Review Area: Yes - Check with Permit Assistance Center

Mazama Pocket Gopher Soils Review Area Preference: Medium, Low

Marine Riparian Review Area - 300':

Stream Riparian Review Area - 300':

Unknown

Wetland Review Area - 300':

Unknown

Shoreline Master Program and 100' Review Area: No

FEMA Panel No.: 0365, 0362

Wellhead Protection Area:

Area of Groundwater Concern:

No
Elevated Nitrates:

No

Soil Type: Spanaway gravelly sandy loam, 0 to 3% slopes

Hydric Soil: Unknown

Watershed: NISQUALLY RIVER

Water Service Area: Unknown

Water Resource Inventory Area (WRIA): 11

School Attendance District: YELM

Elementary School: FORT STEVENS

Middle School: MILL POND AND YELM

High School: YELM

School Taxing District: View Assessor's Data for Parcel

Fire Response District: S.E. Thurston Fire Authority

Unconsolidated Fire Response District: Yelm

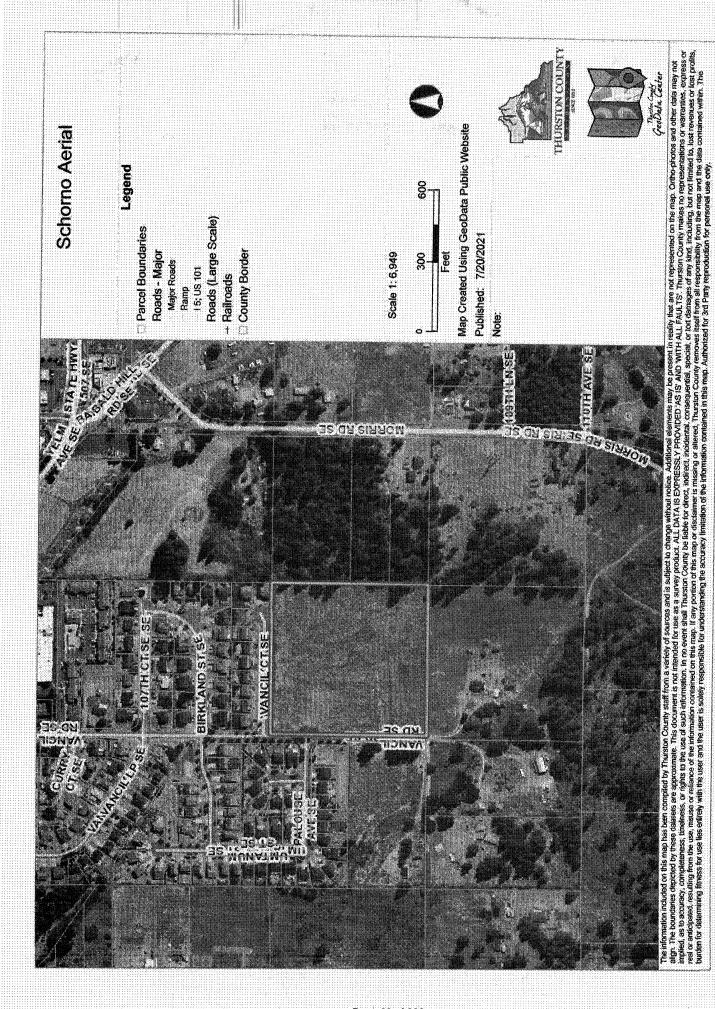
Fire Taxing District: View Assessor's Data for Parcel

Medic Response District: M2

Residential Outdoor Burning: Residential outdoor burning is banned within the city

2

limits and urban growth areas.

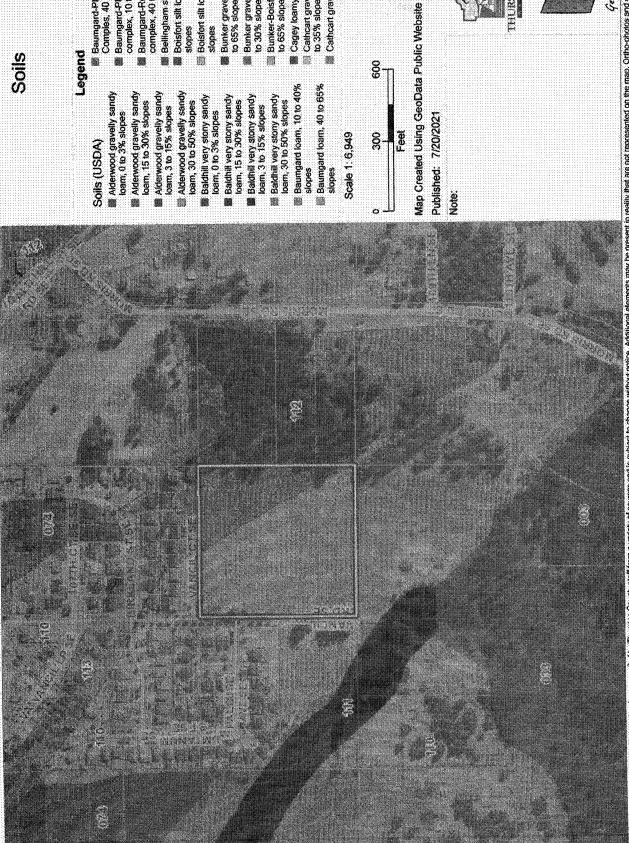

Planning Region:

Census Tract: 012412

Radio or Cell Tower: No Airport Zone: No

Contamination: Unknown

© Thurston County Geodata Center 2021



The information included on lihs map has been compiled by Thurston County staff from a variety of sources and is subject to change without notice. Additional elements may be present in reality that are not represented on the map. Ortho-photos and other data may not align. Thurston County makes no representations or warranties, express or might. The boundaries the presentations or warranties, express or might as to accuracy, completeness, thinking to the use of such information contained on this map, if any portion of this map or disciolarly. Thurston County removes itself from the use and the data contained within. The art of attended to the information contained on this map, if any portion of this map or disciolarly. Thurston County removes itself from the map and the data contained within. The boundaries for the use in the user in the user and the user and the user all the user and the u

GeoDate Carter

THURSTON COUNTY

Bunker gravelly silt loam, 30 to 65% slopes

Boisfort slft loam, 20 to 40%

Bellingham sifty day loam

Boisfort silt loam, 5 to 20%

slopes slopes

complex, 40 to 65% slopes

Baumgand-Rock outcrop

Baumgard-Pheeney Comples, 40 to 65% slopes Baumgard-Pheeney complex, 10 to 40% slopes

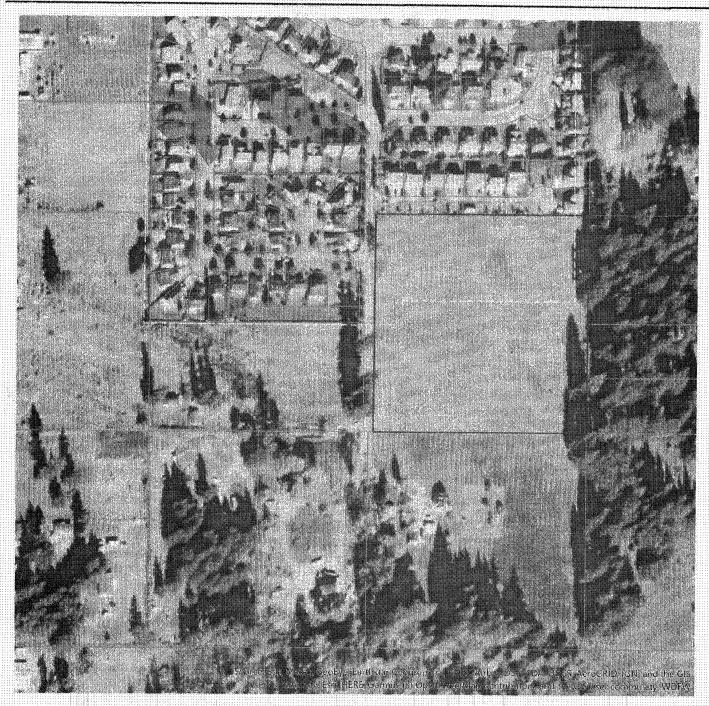
Legend

Bunker-Boisfort complex, 40 Bunker gravelly silt loam, 5

to 30% slopes to 65% slopes Cathcart gravelly loam, 3 to

Feet 300

Cathcart gravelly loam, 15


to 35% slopes

Cagey loamy sand

The information included on this map has been compiled by Thurston County staff from a variety of sources and is subject to change without notice. Additional elements may be present in reality that are not represented on the map. Ortho-photos and other data may not align. The boundaries depicted by these datasets are approximate. This cocument is not intended for use as a survey product, ALL DATA IS EXPRESSLY PROVIDED AS IS AND WITH ALL FAULTS. Thurston County makes no representations or warranties, express or any sind, including, but not limited to lost revenues or lost profits, read or autopased, county encounter, or fortial mages of any kind, including, but not limited to, lost revenues or lost profits, and or autopased, resulting from the use, inlines or reliance of the information contained on this map. If any portion of this map or disclaimer is missing or altered. Thurston County removes itself from all responsibility from the map and the data contained within. The burden for determining fitness for use lies entirely with the user and the user is solely responsible for understanding the accuracy limitation of the information contained in this map. Authorized for 3rd Party reproduction for personal use only.

Priority Habitats and Species on the Web

Buffer radius: 300 Feet

Report Date: 07/20/2021, Parcel ID: 22730410300

PHS Species/Habitats Overview:

Occurence Name	Federal Status	State Status	Generalized Location
Townsend's Big-eared Bat	N/A	Candidate Ye	
Yuma myotis	N/A	N/A Ye	S

PHS Species/Habitats Details:

Townsend's Big-eared Bat			
Scientific Name	Corynorhinus townsendii		
Notes	This polygon mask represents one or more records of the above species or habitat occurrence. Contact PHS Data Release (360-902-2543) for obtaining information about masked sensitive species and habitats.		
Federal Status	N/A		
State Status	Candidate		
PHS Listing Status	PHS Listed Occurrence		
Sensitive	Y		
SGCN	Y CONTROL OF THE PROPERTY OF T		
Display Resolution	TOWNSHIP		
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=00027		

Yuma myotis	The transfer of the property of the state of
Scientific Name	Myotis yumanensis
Notes	This polygon mask represents one or more records of the above species or habitat occurrence. Contact PHS Data Release (360-902-2543) for obtaining information about masked sensitive species and habitats.
Federal Status	N/A
State Status	N/A
PHS Listing Status	PHS Listed Occurrence
Sensitive	Y
SGCN	N
Display Resolution	TOWNSHIP
ManagementRecommendations	http://wdfw.wa.gov/publications/pub.php?id=00605

DISCLAIMER. This report includes information that the Washington Department of Fish and Wildlife (WDFW) maintains in a central computer database. It is not an attempt to provide you with an official agency response as to the impacts of your project on fish and wildlife. This information only documents the location of fish and wildlife resources to the best of our knowledge. It is not a complete inventory and it is important to note that fish and wildlife resources may occur in areas not currently known to WDFW blologists, or in areas for which comprehensive surveys have not been conducted. Site specific surveys are frequently necessary to rule out the presence of priority resources. Locations of fish and wildlife resources are subject to variation caused by disturbance, changes in season and weather, and other factors. WDFW does not recommend using reports more than six months old.

Site Visit Date: $\frac{6/17/2021}{}$

Site Name and Parcel # How were the data collected? (circle the method for each)	Parcel #: 22730410300 Project #:
Field Team Personnel: (Indicate all staff present, CIRCLE who filled out form)	Name: Gary Cooper Name: Name:
Others onsite (name/affiliation)	
Site visit # (CIRCLE all that apply)	1 st 2 nd Unable to screen Notes:
Do onsite conditions preclude the need for further visits?	Yes No Dense woody cover that encompasses the entire site (trees/shrubs) that appears to preclude any potential MPG use. Impervious Compacted Graveled Flooded Other Notes:
Describe visibility for mound detection:	Poor Fair Good Notes:
Request mowing? (CIRCLE and DESCRIBE WHERE MOWING IS NEEDED and SHOW ON AERIAL PHOTO	Yes No N/A Notes:

Mounds observed over the whole site are characteristic of:	MPG Mounds	Likely MPG Mounds	Indeterminate	Likely Mole Mounds	Mole Mounds
Quantify or describe amount of each type and approx. # of mounds Group = 3 mounds or more	0	0	0	0	>50
	No MPG mour	nds (circle)	>		
MPG mounds in GPS? (CIRCLE and DESCRIBE) If MPG mounds present, entered in GPS?	None All Notes; Yes No	Most So	ome		
Does woody vegetation onsite (match aerial photo?	Yes No	- describe diff	erences and shov	on parcel r	nap/aerial:
What portion(s) of the property was screened? (CIRCLE and DESCRIBE)	All Part	t - describe an	d show on parcel	map/aerial:	
Notes -		show on parcel	map/aerial if app	olicable:	Andrew Marketine (1994)
Team reviewed and agreed to data recorded on form? (CIRCLE, and EXPLAIN if "No")	Yes No Notes:	Reviewed	by initials: <u>GL</u>	<u> </u>	

Site Visit Date: 7/19/2021

Site Name and Parcel #	Parcel #: 22730410300
	Project #:
	Site/Landowner: BLEW SCHORNO
How were the data collected?	Transect: Trimble Garmin Aerial
(circle the method for each)	Mounds Trimble Garmin Aerial
	LAC TENLUCE ON
	Notes: <u>612 / K/TCKEK</u> , 900
	deputed in report
Field Team Personnel:	Notes: <u>GPS TRACKER</u> , as depicted in report Name: Bary Cooper
(Indicate all staff present, CIRCLE	Name:
who filled out form)	Name:
Others onsite (name/affiliation)	
Site visit #	1 st 2 nd Unable to screen
(CIRCLE all that apply)	Notes:
Do onsite conditions preclude the	Yes (No)
need for further visits?	Dense woody cover that encompasses the entire site (trees/shrubs) that
	appears to preclude any potential MPG use.
	Impervious Compacted Graveled Flooded
	Other Notes:
	Poor Fair Good Notes:
Describe visibility for mound detection:	Poor Fair Good Notes:
Request mowing?	Yes No N/A Notes:
(CIRCLE and DESCRIBE WHERE	
MOWING IS NEEDED and SHOW ON AERIAL PHOTO	
UN ALMADANO.	

Mounds observed over the whole site are characteristic of:	MPG Mounds	Likely MPG Mounds	Indeterminate	Likely Mole Mounds	Mole Mounds
Quantify or describe amount of each type and approx. # of mounds					>50
Group = 3 mounds or more					-
	No MPG mou	nds (circle)			
MPG mounds in GPS? (CIRCLE and DESCRIBE) If MPG mounds present, entered in GPS?	None All Notes: Yes No		ime		
Does woody vegetation onsite match aerial photo?	Yes No)- describe diffi	erences and show	on parcel r	nap/aerial:
What portion(s) of the property was screened?	All Par	t - describe and	d show on parcel	map/aerial:	
(CIRCLE and DESCRIBE)					
Notes -	Describe, and	show on parcel	map/aerial if app	llicable:	
	SEE	REPOR-	T		
Team reviewed and agreed to data recorded on form? (CIRCLE, and EXPLAIN if "No")	Yes No Notes:	Reviewed	by initials: <u>GLC</u>	-	

DATE:

July 20, 2021

Submitted To:

Glenn Schorno

From:

Gary Cooper, Local Planning Solutions

Subject:

Mazama Pocket Gopher Survey Findings

This report has been completed following the Thurston County approved protocols for determining the presence of Pocket Gophers. Conclusions made in this report are based on two site visits conducted at the required intervals as well as data research from the Thurston County Geodata website and the Washington Department of Fish and Wildlife Priority Habitats and Species (PHS) database. Maps and summary reports obtained from both the Geodata and PHS sites are included with this report.

Survey Findings

No Mazama Gopher activity was observed on the property.

Property Information

Owners:

G.E.S. Land, LLC

Site Address:

None

Parcel Number:

22730410300

Parcel Size:

10 acres

Field Visit Dates:

June 17, 2021

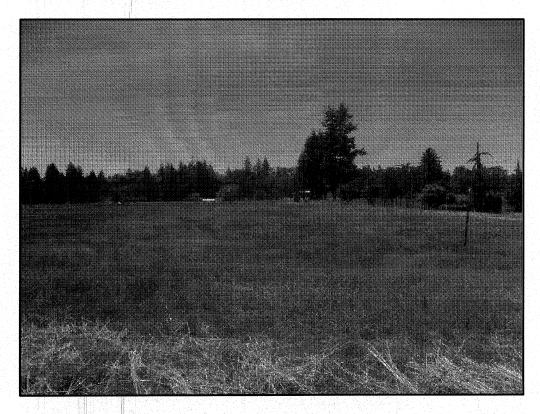

July 19, 2021

Photo 1: Property aerial

Photo 2: Photo taken from southwest corner

Thurston Geodata Review

A property search on the Thurston Geodata indicates that this parcel is comprised of Spanaway gravelly sandy loam 0-3% (#110), which is categorized as "More Preferred," and Spanaway stony sandy loam 0-3% (#112), which is categorized as "Less Preferred."

Photo 3: Gopher Soils Indicator Map

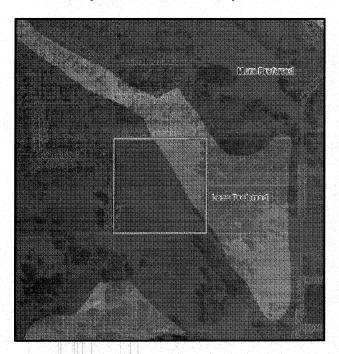
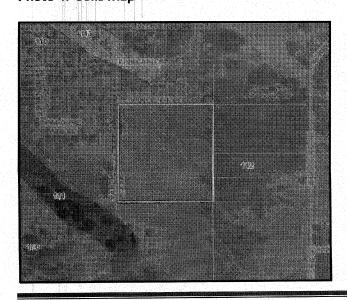



Photo 4: Soils Map

Priority Habitats and Species Review

A search of the Washington Department of Fish and Wildlife's (WDFW) Priority Habitats and Species (PHS) database did not indicate an occurrence of the Mazama Pocket Gopher within 300 feet of the property. A printout of PHS report for this area is included as an attachment.

Photo 5: PHS Report Area

Site Visit #1

The initial site visit was conducted on June 17, 2021. The parcel contains a single-family residence. Visibility was excellent. The site has numerous active mole mounds, but no gopher mounds were observed.

No Mazama Pocket Gopher mounds were observed on the parcel.

Site Visit #2

The second site visit was conducted on July 19, 2021, again following the County's protocol. As with the initial survey, numerous mole mounds were detected, but no gopher mounds were observed.

Photo 6: 1st Site Visit – GPS-tracked survey route

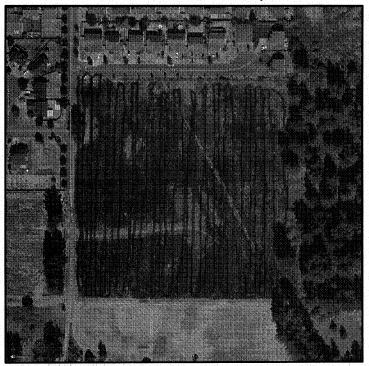
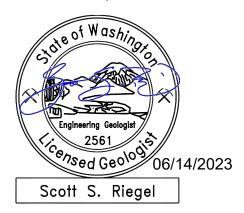


Photo 7: 2nd Site Visit – GPS-tracked survey route



PREPARED FOR

COPPER RIDGE, LLC

June 14, 2023

Scott S. Riegel, L.G., L.E.G. Associate Principal Geologist

Kyle R. Campbell, P.E. Senior Principal Engineer

GEOTECHNICAL ENGINEERING STUDY PROPOSED VANCIL ROAD SUBDIVISION 10800 VANCIL ROAD SOUTHEAST THURSTON COUNTY (YELM), WASHINGTON

ES-9150

Earth Solutions NW, LLC 15365 Northeast 90th Street, Suite 100 Redmond, Washington 98052 Phone: 425-449-4704 | Fax: 425-449-4711 www.earthsolutionsnw.com

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative – interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will <u>not</u> be adequate to develop geotechnical design recommendations for the project.

Do <u>not</u> rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it;
 e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and* refer to the report in full.

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- · the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- · the composition of the design team; or
- · project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept*

responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- · confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction-phase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note*

conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.

Telephone: 301/565-2733

e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.

June 14, 2023 ES-9150

Earth Solutions NW LLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

Copper Ridge, LLC P.O. Box 73790 Puyallup, Washington 98373

Attention: Evan Mann

Dear Evan:

Earth Solutions NW, LLC (ESNW), is pleased to present this report to support the proposed project. Based on the results of our investigation, construction of the proposed residential development is feasible from a geotechnical standpoint.

Based on conditions observed during our fieldwork, the site is underlain primarily by native soils consisting of glacial outwash sand/gravel deposits. The proposed residential structures can be supported on conventional spread and continuous foundations bearing on undisturbed competent native soil, recompacted native soil, or new structural fill placed directly on a competent subgrade surface. We anticipate competent native soil suitable for support of foundations will generally be encountered beginning at depths of about two to four feet below existing grades across the site.

Based on our investigation, infiltration is considered feasible from a geotechnical standpoint due to the pervasive presence of relatively clean outwash sand/gravel soils.

This report provides geotechnical analyses and recommendations for the proposed residential development. We appreciate the opportunity to be of service to you on this project. If you have any questions regarding the content of this study, please call.

Sincerely,

EARTH SOLUTIONS NW, LLC

Scott S. Riegel, L.G., L.E.G. Associate Principal Geologist

Table of Contents

ES-9150

	<u>PAGE</u>
INTRODUCTION	1
General	1
Project Description	2
1 Toject Bescription	_
SITE CONDITIONS	2
Surface	
Subsurface	2 2 3 3 3
Topsoil and Fill	3
Native Soil	3
Geologic Setting	3
Groundwater	3
GEOLOGIC CRITICAL AREAS EVALUATION	4
DISCUSSION AND RECOMMENDATIONS	4
General	4
Site Preparation and Earthwork	4
Temporary Erosion Control	5
Stripping	5
In-situ and Imported Soil	6
Structural Fill	6
Excavations and Slopes	7
Subgrade Preparation	7
Foundations	7
Retaining Walls	8
Seismic Design	9
Slab-on-Grade Floors	10
<u>Drainage</u>	10
Preliminary Infiltration Evaluation	10
Utility Support and Trench Backfill	11
Preliminary Pavement Sections	12
LIMITATIONS	13
LIMITATIONS Additional Services	13

Table of Contents

Cont'd

ES-9150

GRAPHICS

Plate 1 Vicinity Map

Plate 2 Test Pit Location Plan

Plate 3 Retaining Wall Drainage Detail

Plate 4 Footing Drain Detail

APPENDICES

Appendix A Subsurface Exploration

Test Pit Logs

Appendix B Laboratory Test Results

GEOTECHNICAL ENGINEERING STUDY VANCIL ROAD SUBDIVISION 10800 VANCIL ROAD SOUTHEAST THURSTON COUNTY (YELM), WASHINGTON

ES-9150

INTRODUCTION

General

This geotechnical engineering study (study) was prepared for the proposed residential development to be constructed in Yelm, Washington. To complete our scope of services, we performed the following:

- Subsurface exploration to characterize the soil and groundwater conditions.
- Laboratory testing of representative soil samples collected on site.
- Engineering analyses.
- Preparation of this report.

The following documents and resources were reviewed as part of our report preparation:

- Vancil Road Layout, provided by the client, dated February 27, 2023.
- Morris Road Plat, prepared by AHBL, dated June 15, 2022.
- Surficial hydrogeologic units of the Puget Sound aquifer system, Washington and British Columbia, for the Centralia quadrangle (Plate 17 of 18) M.A. Jones 1998.
- Web Soil Survey (WSS) online resource, maintained by the Natural Resources Conservation Service (NRCS) under the United States Department of Agriculture (USDA).
- Pierce County Stormwater Management and Site Development Manual, effective July 1, 2021.
- Yelm Municipal Code Chapter 18.21.

Project Description

The overall project area is located off the east side of Vancil Road Southeast in Yelm, Washington.

Site grading plans were not available at the time of this proposal; however, we understand the Vancil Road project will consist of construction of 60 single-family homesites and the Morris Road site will be developed with 30 lots and associated infrastructure improvements. Each site will include a stormwater management facility, and will require seasonal groundwater monitoring. We presume infiltration will be pursued to the extent feasible.

At the time of report submission, specific building loads were not available for review; however, we anticipate the proposed residential structures will consist of relatively lightly loaded wood framing supported on conventional foundations. Based on our experience with similar developments, we estimate wall loads of about 1 to 3 kips per linear foot and slab-on-grade loading of 150 pounds per square foot (psf) will be incorporated into the final design. Based on the low topographic relief on this site, we anticipate grading will be limited to cuts and fills of about five feet or less for lots. Deeper cuts will occur for utilities and the stormwater tracts.

If the above design assumptions are incorrect or change, ESNW should be contacted to review the recommendations provided in this report. ESNW should review final designs to confirm that appropriate geotechnical recommendations have been incorporated into the plans.

SITE CONDITIONS

Surface

The two properties that comprise the Vancil Road and Morris Road sites consist of Thurston County Parcel Nos. 22730410300 & 22730410000. The sites are vacant and the majority of the Vancil Road site area is surfaced with field grass used as fenced pasture while the Morris Road site is largely forested. Topography is gently undulating. The Vancil Road property is bordered to the north and west by residential development, to the east by the Morris Road property and to the south by open space. The Morris Road property is bordered to the north and south by residential property, to the east by Morris Road Southeast and to the west by the Vancil Road property.

Subsurface

A representative of ESNW observed, logged, and sampled 18 test pits at accessible locations within the property boundaries on April 24/25, 2023 using a machine and operator provided by the client. The explorations were completed to assess and classify the site soils and to characterize the groundwater conditions within areas proposed for new development. The maximum exploration depth was approximately 16 feet below the existing ground surface (bgs).

The approximate locations of the test pits are depicted on Plate 2 (Test Pit Location Plan). Please refer to the test pit logs provided in Appendix A for a more detailed description of subsurface conditions. Representative soil samples collected at our exploration locations were analyzed in general accordance with Unified Soil Classification System (USCS) and USDA methods and procedures.

Topsoil and Fill

Topsoil was generally encountered within the upper 12 to 18 inches of existing grades at the test pit locations, except several explorations that encountered up to 24 inches. It is possible that deeper or shallower pockets of topsoil will be encountered locally across the site. The topsoil was characterized by its dark brown color, the presence of fine organic material, and small root intrusions.

Fill was not encountered during the subsurface exploration; however, fill is likely present to varying degrees around existing structures.

Native Soil

Underlying the topsoil, native soils consisting primarily of medium dense poorly and well graded gravel with sand (USCS: GP and GW) soils were encountered. At an isolated location TP-6 at 16 feet), a well graded sand with silt (USCS: SW-SM) layer was encountered. Fines contents within the native soil deposits were less than 5 percent, except the isolated layer of sand with silt which had a fines content of about 7.4 percent at TP-6. The native soils were primarily observed to be in a damp to moist condition and caving was common within the relatively clean sandy gravel deposits.

Geologic Setting

Geologic mapping of the area identifies recessional outwash gravel deposits (Qvrg) as the primary geologic unit underlying the site. The online WSS resource identifies Spanaway series soils (Map Units 110 and 112) roughly evenly distributed across the site. The referenced soil survey characterizes Spanaway gravelly sandy loam with slow surface water runoff and little to no hazard of water erosion and are assigned to hydrologic soil group A.

Based on the soil conditions encountered during our fieldwork, the native soils are consistent with the geologic and soils mapping resources outlined in this section of outwash sand/gravel soils.

Groundwater

Groundwater was not observed, during the April 2023 subsurface explorations. Groundwater flow rates and elevations may fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the winter, spring, and early summer months. In any case, groundwater conditions should be expected within deeper site excavations, particularly during the wet season. Depending on the timing, depth, and extent of such excavations, temporary dewatering may be necessary.

GEOLOGIC CRITICAL AREAS EVALUATION

The subject property was evaluated for the presence of geologic critical areas in general accordance with Yelm Municipal Code Chapter 18.21. Based on our review no geologic critical areas are present on or immediately adjacent to the subject site.

Based on review of the Thurston County Wellhead Protection Areas map, the site is located within a 10-year Time-of-Travel area.

DISCUSSION AND RECOMMENDATIONS

General

Based on the results of our investigation, construction of the proposed residential development is feasible from a geotechnical standpoint. The primary geotechnical considerations associated with the proposed project include earthwork, temporary excavations, subgrade preparation, foundation support, and drainage.

Based on local geologic mapping and conditions observed during our fieldwork, the site is underlain primarily by native soils consisting of medium dense outwash sandy gravel deposits. The proposed residential structures can be supported on conventional spread and continuous foundations bearing on undisturbed competent native soil, recompacted native soil, or new structural fill placed directly on a competent subgrade. We anticipate competent native soil suitable for support of foundations will generally be encountered beginning at depths of about two to four feet below existing grades across the site.

Based on our investigation, infiltration is considered feasible from a geotechnical standpoint due to the presence of Spanaway gravel soils across the site.

This study has been prepared for the exclusive use of Copper Ridge, LLC and their representatives. No warranty, expressed or implied, is made. This study has been prepared in a manner consistent with the level of care and skill ordinarily exercised by other members of the profession currently practicing under similar conditions in this area.

Site Preparation and Earthwork

Site preparation activities should consist of installing temporary erosion control measures, establishing grading limits, and performing site stripping. Subsequent earthwork activities will likely include site grading, utility installations, and associated site improvements.

Temporary Erosion Control

The following temporary erosion and sediment control Best Management Practices (BMPs) are recommended:

- Temporary construction entrances and drive lanes, consisting of at least six inches of quarry spalls, should be considered to both minimize off-site soil tracking and provide stable surfaces at site entrances. Placing geotextile fabric underneath the quarry spalls will provide greater stability if needed.
- Silt fencing should be placed around the appropriate portions of the site perimeter to prevent offsite migration of sediment.
- When not in use, soil stockpiles should be covered or otherwise protected (as necessary) to reduce the potential for soil erosion, especially during periods of wet weather.
- As necessary, temporary measures for controlling surface water runoff, such as interceptor trenches, sumps, or interceptor swales, should be installed prior to beginning earthwork activities. For this site, infiltration may also be considered for control of surface water runoff.
- Dry soils disturbed during construction should be wetted to minimize dust and airborne soil erosion.

Additional Best Management Practices, as specified by the project civil engineer and indicated on the plans, should be incorporated into construction activities. Temporary erosion control measures may be modified during construction as site conditions require, as approved by the site erosion control lead.

Stripping

Topsoil was encountered generally within the upper 12 to 18 inches with isolated areas up to 24 inches of existing grades at the test pit locations. ESNW should be retained to observe site stripping activities at the time of construction so that the degree of required stripping may be assessed. The exposed subgrade may still possess root elements, other organic material, or be present in a loose condition. As such, ESNW should evaluate the exposed soil subgrade to determine if further stripping or in-situ compaction efforts prior to fill operations or finish grading is necessary. Over-stripping should be avoided, as it is unnecessary and may result in increased project development costs. Topsoil and organic-rich soil are neither suitable for foundation support nor for use as structural fill. Topsoil and organic-rich soil may be used in non-structural areas if desired.

In-situ and Imported Soil

The in-situ soils encountered at the subject site have a low to moderate sensitivity to moisture and were generally in a damp to moist condition at the time of exploration. Soils anticipated to be exposed on site may degrade if exposed to wet weather and construction traffic. Compaction of the soils to the levels necessary for use as structural fill may be difficult to impossible during wet weather conditions. Soils encountered during site excavations that are excessively over the optimum moisture content will likely require aeration or treatment prior to placement and compaction. Conversely, soils that are substantially below the optimum moisture content will require moisture conditioning through the addition of water prior to use as structural fill. An ESNW representative should determine the suitability of in-situ soils for use as structural fill at the time of construction.

Imported soil intended for use as structural fill should be evaluated by ESNW during construction. The imported soil must be workable to the optimum moisture content, as determined by the Modified Proctor Method (ASTM D1557), at the time of placement and compaction. During wet weather conditions, imported soil intended for use as structural fill should consist of a well-graded, granular soil with a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction).

Structural Fill

Structural fill is defined as compacted soil placed in foundation, slab-on-grade, roadway, permanent slope, retaining wall, and utility trench backfill areas. Structural fill placed and compacted during site grading activities should meet the following specifications and guidelines:

Structural fill material	Granular soil*
Moisture content	At or slightly above optimum [†]
Relative compaction (minimum)	95 percent (Modified Proctor) [‡]
 Loose lift thickness (maximum) 	12 inches

^{*} Existing gravel soils will likely require moisture conditioning (addition of water) prior to placement and compaction.
† Soil shall not be placed dry of optimum and should be evaluated by ESNW during construction.

With respect to underground utility installations and backfill, local jurisdictions may dictate the soil type(s) and compaction requirements. Unsuitable material or debris must be removed from structural areas if encountered.

[‡] Minimum relative compaction of 90% may be feasible for mass grading activities and should be evaluated by ESNW during construction.

Excavations and Slopes

The following Federal Occupation Safety and Health Administration and Washington Industrial Safety and Health Act soil classifications and maximum allowable temporary slope inclinations may be used:

Areas exposing groundwater seepage
 1.5H:1V (Type C)

Loose soil and fill
 1.5H:1V (Type C)

Medium dense to dense soil
 1H:1V (Type B)

Groundwater seepage should be anticipated during excavation activities, especially if excavations take place during the wet season. An ESNW representative should observe temporary excavations to evaluate the presence of groundwater seepage. If seepage is not observed, steeper temporary slope inclinations may be feasible pending evaluation by the geotechnical engineer.

Subgrade Preparation

Foundations should be constructed on competent native soil or structural fill placed directly on competent native soil. Loose or unsuitable soil conditions encountered below areas of footing and slab elements should be remedied as recommended in this report. In general, foundation subgrades on native cut surfaces should be compacted in-situ to a minimum depth of one foot below the design subgrade elevation. Uniform compaction of the foundation and slab subgrade areas will establish a relatively consistent subgrade condition below the foundation and slab elements. ESNW should observe the foundation and slab subgrade prior to placing formwork. Supplementary recommendations for subgrade improvement can be provided at the time of construction and would likely include further mechanical compaction effort and/or overexcavation and replacement with suitable structural fill.

Foundations

The proposed structures can be constructed on conventional continuous and spread footing foundations bearing on competent native soil, recompacted native soil, or new structural fill placed directly on competent native soil. Where loose or unsuitable soil conditions are encountered at foundation subgrade elevations, compaction of the soils to the specifications of structural fill, or overexcavation and replacement with suitable structural fill will likely be necessary. A representative of ESNW should confirm suitability of foundation subgrades at the time of construction. If deemed necessary, the undisturbed weathered native soils may be compacted in-situ provided the soil is at or slightly above the optimum moisture content.

Provided the structures will be supported as described above, the following parameters may be used for design of the new foundations:

•	Allowable soil bearing capacity	2,500 psf
---	---------------------------------	-----------

• Passive earth pressure 300 pcf

• Coefficient of friction 0.40

A one-third increase in the allowable soil bearing capacity can be assumed for short-term wind and seismic loading conditions. The passive earth pressure and coefficient of friction values include a safety factor of 1.5. With structural loading as expected, total settlement in the range of one inch is anticipated, with differential settlement of about one-half inch. The majority of the settlement should occur during construction as dead loads are applied.

Retaining Walls

Retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters may be used for retaining wall design:

•	Active earth pressure	(unrestrained condition)	35 pcf
---	-----------------------	--------------------------	--------

At-rest earth pressure (restrained condition)
 55 pcf

• Coefficient of friction 0.40

Seismic surcharge
 8H psf*

The passive earth pressure and coefficient of friction values include a safety factor of 1.5. Additional surcharge loading from adjacent foundations, sloped backfill, or other loads should be included in the retaining wall design.

Retaining walls should be backfilled with free-draining material that extends along the height of the wall and a distance of at least 18 inches behind the wall. Relatively clean (fines content less than 5 percent) native soils may be used as the drainage zone, but should be observed by ESNW prior to placement. The upper 12 inches of the wall backfill may consist of a less permeable soil, if desired.

Traffic surcharge (passenger vehicles)
 70 psf (rectangular distribution)

Passive earth pressure
 300 pcf

^{*} Where H equals the retained height (in feet).

Drainage should be provided behind retaining walls such that hydrostatic pressures do not develop. If drainage is not provided, hydrostatic pressures should be included in the wall design. A perforated drainpipe should be placed along the base of the wall and connected to an approved discharge location. A typical retaining wall drainage detail is provided on Plate 3.

Seismic Design

The 2018 International Building Code (2018 IBC) recognizes the most recent edition of the Minimum Design Loads for Buildings and Other Structures manual (ASCE 7-16) for seismic design, specifically with respect to earthquake loads. Based on the soil conditions encountered at the test pit locations, the parameters and values provided below are recommended for seismic design per the 2018 IBC.

Parameter	Value
Site Class	D*
Mapped short period spectral response acceleration, $S_S(g)$	1.280
Mapped 1-second period spectral response acceleration, $S_1(g)$	0.463
Short period site coefficient, Fa	1.000
Long period site coefficient, F _v	1.837
Adjusted short period spectral response acceleration, $S_{MS}\left(g\right)$	1.280
Adjusted 1-second period spectral response acceleration, $S_{M1}\left(g\right)$	0.850
Design short period spectral response acceleration, $S_{DS}\left(g\right)$	0.853
Design 1-second period spectral response acceleration, $S_{D1}\left(g\right)$	0.567

^{*} Assumes medium dense soil conditions, encountered to a maximum depth of 16 feet bgs during the April 2023 field exploration, remain medium dense or better to at least 100 feet bgs.

As indicated in the table footnote, several of the seismic design values provided above are dependent on the assumption that site-specific ground motion analysis (per Section 11.4.8 of ASCE 7-16) will not be required for the subject project. ESNW recommends the validity of this assumption be confirmed at the earliest available opportunity during the planning and early design stages of the project. Further discussion between the project structural engineer, the project owner (or their representative), and ESNW may be prudent to determine the possible impacts to the structural design due to increased earthquake load requirements under the 2018 IBC. ESNW can provide additional consulting services to aid with design efforts, including supplementary geotechnical and geophysical investigation, upon request.

Liquefaction is a phenomenon where saturated or loose soil suddenly loses internal strength and behaves as a fluid. This behavior is in response to increased pore water pressures resulting from an earthquake or another intense ground shaking. In our opinion, site susceptibility to liquefaction may be considered negligible. The absence of a shallow groundwater table and the coarse (gravel) gradation of the native soil were the primary bases for this opinion.

[†] Values assume F_v may be determined using linear interpolation per Table 11.4-2 in ASCE 7-16.

Slab-on-Grade Floors

Slab-on-grade floors should be supported on a firm and unyielding subgrade consisting of competent native soil or at least 12 inches of new structural fill. Unstable or yielding areas of the subgrade should be recompacted or overexcavated and replaced with suitable structural fill prior to slab construction.

A capillary break consisting of a minimum of four inches of free-draining crushed rock or gravel should be placed below the slab. The free-draining material should have a fines content of 5 percent or less defined as the percent passing the number 200 sieve, based on the minus three-quarters-inch fraction. In areas where slab moisture is undesirable, installation of a vapor barrier below the slab should be considered. The relatively clean (less than 5 percent fines) native gravel soils may be used or considered functionally equivalent as a capillary break; however, ESNW should observe native soils prior to placement to confirm suitability. If used, the vapor barrier should consist of a material specifically designed to function as a vapor barrier and should be installed in accordance with the manufacturer's specifications.

Drainage

Temporary measures to control surface water runoff and groundwater during construction would likely involve passive elements such as interceptor trenches, interceptor swales, and sumps. ESNW should be consulted during preliminary grading to identify areas of seepage and provide recommendations to reduce the potential for seepage-related instability.

Finish grades must be designed to direct surface drain water away from structures and slopes. Water must not be allowed to pond adjacent to structures or slopes. Based on the presence of relatively clean sand/gravel soils on this site, footing drains may be omitted at the owner's discretion. If footing drains are omitted, we recommend ESNW be contacted to observe the subgrade to ensure the entire alignment exposes relatively free-draining sand/gravel. If footing drains will be installed, a foundation drain should be installed along building perimeter footings. A typical foundation drain detail is provided on Plate 4.

Preliminary Infiltration Evaluation

As indicated on the referenced preliminary site plan, a stormwater tract will be created in each of the project areas. The Vancil Road plat will include a storm tract in the western portion of the site, while the Morris Road plat will include a storm tract in the eastern portion. ESNW excavated three test pits in each storm tract (TP-5 through TP-7 for Vancil Road and TP-11 through TP-13 for the Morris Road site). Native soils encountered across the site during our fieldwork were characterized primarily as recessional outwash gravel deposits with relatively low fines contents. Based on our laboratory analyses, the native soils classify primarily as USDA loamy sand with fines contents ranging from about 1.3 to 4.7 percent with one outlier (TP-6) with a fines content of 7.4 percent. The results of our laboratory analyses are included in Appendix B of this report.

Using Method 3 - Soil Grain Size Analysis Method, in conjunction with the presence of Type A soil on the subject site, we determined a preliminary long-term design infiltration rate to be used primarily as a feasibility screening tool. A preliminary long-term design rate is calculated following the equation below, located in the Pierce County Stormwater and Site Development Manual.

$$log_{10}(K_{sat}) = -1.57 + 1.90D_{10} + 0.015D_{60} - 0.013D_{90} - 2.08F_{fines}$$

The relatively clean Spanaway (Type A) gravels observed in across the site exhibit favorable infiltration characteristics and will likely be feasible for full infiltration. Based on the soil samples obtained at TP-5 through TP-7 and TP-11 through TP-13 within the vicinity of the proposed infiltration facilities at representative depths, preliminary calculated long-term design rates ranging between 7 inches/hour to 87 in/hr were calculated. We recommend using an allowable infiltration rate of 20 in/hr for the Vancil Road plat and 30 in/hr for preliminary sizing calculations/design for the proposed Morris Road stormwater facility. In-situ pilot infiltration testing should be completed for final design of the infiltration ponds.

Groundwater monitoring piezometers were installed at three test locations within each of the proposed stormwater tracts for future groundwater monitoring services, to be completed in the coming wet season. While no indications of seasonal groundwater were observed during the subsurface investigation, winter monitoring may result in alterations to future facility design based on potential groundwater conditions.

Based on our field observations and laboratory analyses, the native gravelly soils do not meet the requirements for water quality treatment per Volume V, Chapter 6.3 of the stormwater manual. Specifically, the measured soil infiltration rate significantly higher than the maximum allowable nine inches per hour. Additionally, the native Spanaway gravels likely possess a lower cation exchange capacity (CEC) and organic content than required by the manual. Therefore, a treatment layer or other provision will likely be required for facility designs.

Utility Support and Trench Backfill

In our opinion, the on-site soil will generally be suitable for support of utilities. Based on the conditions encountered at the exploration locations, groundwater seepage may be exposed within utility trench excavations and will likely require temporary shoring and construction dewatering. Use of the native soil as structural backfill in the utility trench excavations will depend on the in-situ moisture content at the time of placement and compaction. If native soil is placed below the optimum moisture content, settlement will likely occur once wet weather impacts the trenches. As such, backfill soils should be properly moisture conditioned, as necessary, to ensure acceptability of the soil moisture content at the time of placement and compaction. Large clasts greater than about six inches should be removed from utility trench backfill if encountered. Utility trench backfill should be placed and compacted to the specifications of structural fill provided in this report or to the applicable requirements of the presiding jurisdiction.

Preliminary Pavement Sections

The performance of site pavements is largely related to the condition of the underlying subgrade. To ensure adequate pavement performance, the subgrade should be in a firm and unyielding condition when subjected to proof rolling with a loaded dump truck. Structural fill in pavement areas should be compacted to the specifications previously detailed in this report. Soft, wet, or otherwise unsuitable or yielding subgrade conditions will require remedial measures, such as overexcavation and/or placement of thick crushed rock or structural fill sections, prior to pavement. Cement treated base may be considered for stabilizing the subgrade if local jurisdictions allow this method of treatment.

We anticipate new pavement sections will be subjected primarily to passenger vehicle traffic. For lightly loaded pavement areas subjected primarily to passenger vehicles, the following preliminary pavement sections may be considered:

- A minimum of two inches of hot-mix asphalt (HMA) placed over four inches of crushed rock base (CRB), or;
- A minimum of two inches of HMA placed over three inches of asphalt-treated base (ATB).

Heavier traffic areas generally require thicker pavement sections depending on site usage, pavement life expectancy, and site traffic. For preliminary design purposes, the following pavement sections for occasional truck traffic and access roadway areas may be considered:

- Three inches of HMA placed over six inches of CRB, or;
- Three inches of HMA placed over four and one-half inches of ATB.

A representative of ESNW should be requested to observe subgrade conditions prior to placement of CRB or ATB. As necessary, supplemental recommendations for achieving subgrade stability and drainage can be provided. If on-site roads will be constructed with an inverted crown, additional drainage measures may be recommended to assist in maintaining road subgrade and pavement stability.

Final pavement design recommendations, including recommendations for heavy traffic areas, access roads, and frontage improvement areas, can be provided once final traffic loading has been determined. Road standards utilized by the governing jurisdiction may supersede the recommendations provided in this report. The HMA, ATB, and CRB materials should conform to WSDOT specifications. All soil base material should be compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by ASTM D1557.

LIMITATIONS

This study has been prepared for the exclusive use of Copper Ridge, LLC, and its representatives. The recommendations and conclusions provided in this study are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. A warranty is neither expressed nor implied. Variations in the soil and groundwater conditions observed at the exploration locations may exist and may not become evident until construction. ESNW should reevaluate the conclusions provided in this study if variations are encountered.

Additional Services

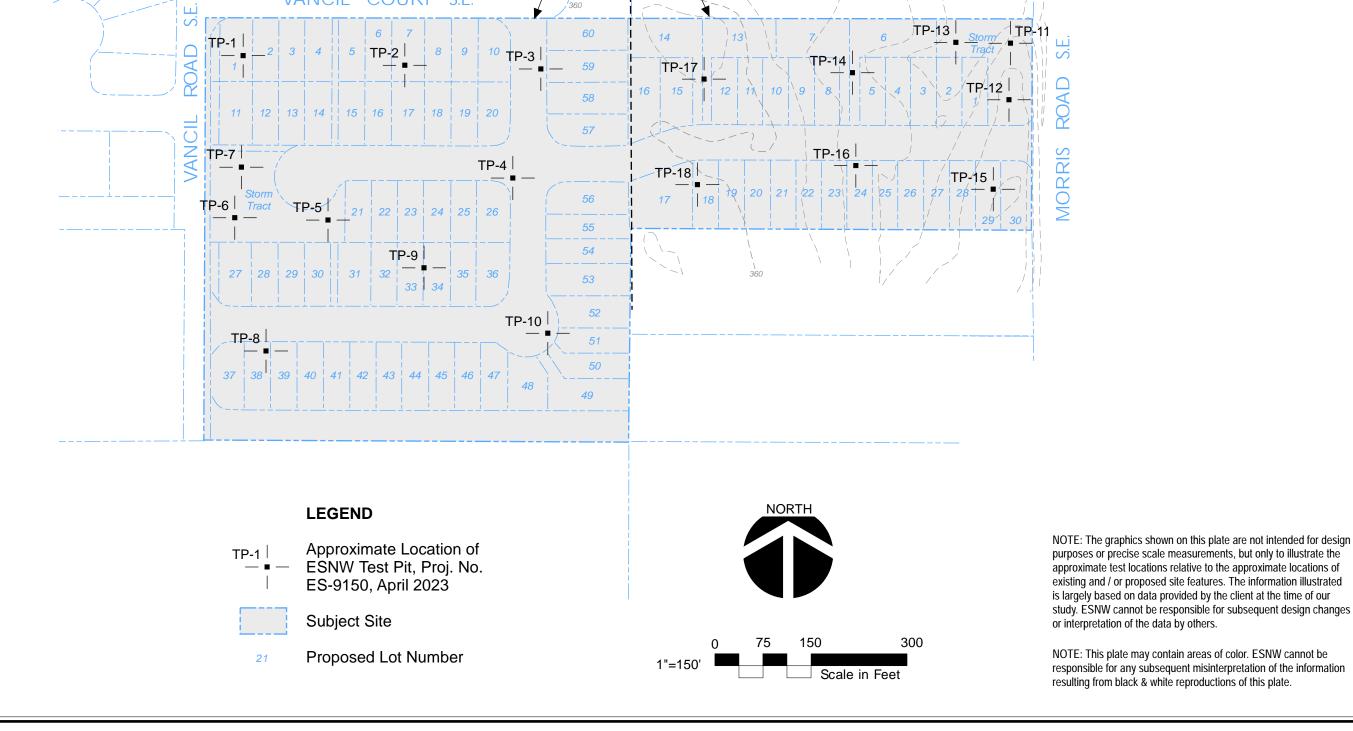
ESNW should have an opportunity to review final project plans with respect to the geotechnical recommendations provided in this report. ESNW should also be retained to provide testing and consultation services as needed during future design and construction phases of the project.

Reference: Thurston County, Washington OpenStreetMap.org

NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Vicinity Map 10800 Vancil Road S.E. Subdivision Thurston County (Yelm), Washington

Drawn CAM	Date 06/06/2023	Proj. No.	9150
Checked SSR	Date June 2023	Plate	1

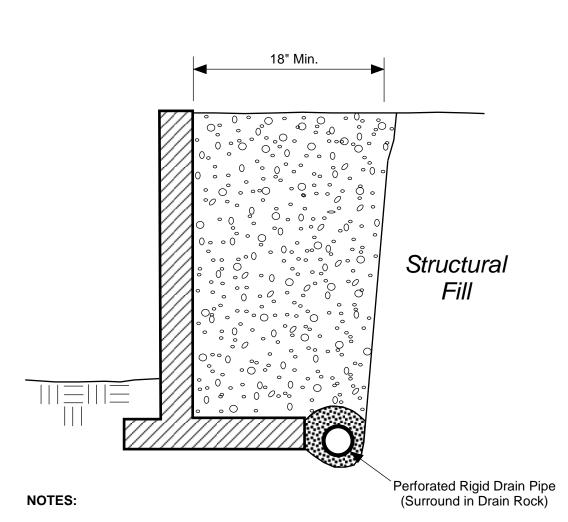

Checked SSR

Date 06/06/2023

Proj. No. 9150

2

Plate



Vancil Plat

Morris Plat

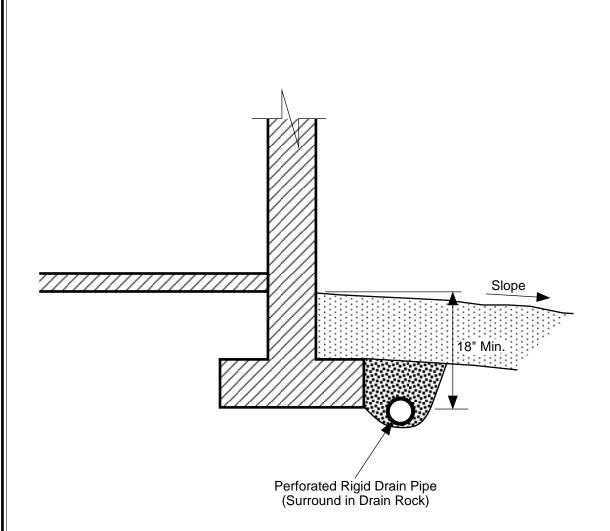
BIRKLAND STREET S.E.

VANCIL COURT S.E.

- Free-draining Backfill should consist of soil having less than 5 percent fines.
 Percent passing No. 4 sieve should be 25 to 75 percent.
- Sheet Drain may be feasible in lieu of Free-draining Backfill, per ESNW recommendations.
- Drain Pipe should consist of perforated, rigid PVC Pipe surrounded with 1-inch Drain Rock.

LEGEND:

Free-draining Structural Backfill


1-inch Drain Rock

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING

Retaining Wall Drainage Detail 10800 Vancil Road S.E. Subdivision Thurston County (Yelm), Washington

Drawn CAM	Date 06/06/2023	Proj. No.	9150
Checked SSR	Date June 2023	Plate	3

NOTES:

- Do NOT tie roof downspouts to Footing Drain.
- Surface Seal to consist of 12" of less permeable, suitable soil. Slope away from building.

LEGEND:

Surface Seal: native soil or other low-permeability material.

1-inch Drain Rock

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING

Footing Drain Detail 10800 Vancil Road S.E. Subdivision Thurston County (Yelm), Washington

Drawn CAM	Date 06/06/2023	Proj. No.	9150
Checked SSR	Date June 2023	Plate	4

Appendix A

Subsurface Exploration Test Pit Logs

ES-9150

Subsurface conditions on site were explored by excavating 18 test pits on April 24/25, 2023, respectively, using equipment and operators provided by the client. The approximate locations of the test pits and borings are illustrated on Plate 2 of this study. The subsurface exploration logs are provided in this Appendix. The maximum exploration depth was 16 feet bgs.

The final logs represent the interpretations of the field logs and the results of laboratory analyses. The stratification lines on the logs represent the approximate boundaries between soil types. In actuality, the transitions may be more gradual.

,	% of Coarse No. 4 Sieve	<u> </u>	GW	or without sand, little to			771 771												
Sieve	% 흥	-0110h		no fines	Dry - Absence of m the touch	oisture, dusty, dry to	ATD = At time ✓ of drilling ATD = At time ✓ below the control of the control												
Sieve	ed Solls - ed on No. 200 Sieve Gravels - More Than 50% Fraction Retained on No.		. 50% on No.		GP	Poorly graded gravel with or without sand, little to no fines	optimum MC	moisture, likely below	Static water Level (date) Static water Grout seal										
	ravels - More Than 50% or Fraction Retained on No.			Silty gravel with or without	at/near optimum M		Filter pack with												
s - o. 200	- More -		GM	sand	likely above optimu														
Coarse-Grained Soils - More Than 50% Retained on No.	iravels Fractio	12%	GC	Clayey gravel with or without sand		w groundwater table	filter pack												
Coarse-Grained 50% Retained	<u>o</u>					_	e Density and Consistency												
Greta				Well-graded sand with	Coarse-Graine		Test Symbols & Units												
rse R R	rse	8	SW	or without gravel, little to no fines	Density	SPT blows/foot	Fines = Fines Content (%)												
, 50g	Coarse Sieve	5% Fine		no lines	Very Loose	< 4	MC = Moisture Content (%)												
ر ¤ از	₽4	2%		Poorly graded sand with	Loose Medium Dense	4 to 9 10 to 29	DD = Dry Density (pcf)												
Ę	Š ė	V	SP	or without gravel, little to	Dense	30 to 49	,												
More	ands - 50% or More Fraction Passes No.			no lines	Very Dense	≥ 50	Str = Shear Strength (tsf) PID = Photoionization Detector (ppm)												
)% (Pas	တ္ထ	SM	Silty sand with or without	Fine-Grained Soils:		 ,												
	- 5(ion	Hin		gravel	Consistency	SPT blows/foot	OC = Organic Content (%)												
-	Sands · Fracti	8////			Very Soft	< 2	CEC = Cation Exchange Capacity (meq/100 g												
	Sar	Sa	Sal	Sal	Sal	Sal		SC	Clayey sand with or without gravel	Soft	2 to 3	LL = Liquid Limit (%)							
				without graver	Medium Stiff	4 to 7	PL = Plastic Limit (%)												
				Silt with or without sand	Stiff	8 to 14	PI = Plasticity Index (%)												
	Silts and Clays aid Limit Less Than 50	5	ML	or gravel; sandy or	Very Stiff	15 to 29													
		Silts and Clays	ilts and Clays imit I ess Thai	ilts and Clays	ilts and Clays		Tha	ays Tha	ays Tha	ays Tha	ays Tha	ays Tha	ays Tha			gravelly silt	Hard	≥ 30	
e e							3 ////		Clay of low to medium		Componer	nt Definitions							
- 200 Sieve								ilts and imit le	ilts and I imit I e		CL	plasticity; lean clay with or without sand or gravel;	Descriptive Term	Size Rang	je and Sieve Number				
. 00										<u>i</u> s	ilts Lim			sandy or gravelly lean clay	Boulders	Larger tha	n 12"		
Soils No. 2				OL	Organic clay or silt of	Cobbles	3" to 12"												
ũŽ	.5		OL	low plasticity	Gravel	3" to No. 4 3" to 3/4"	l (4.75 mm)												
Ine(Coarse Gravel Fine Gravel		. 4 (4.75 mm)												
Fine-Grained More Passes	Aore	٥	a	а	а	ģ	, 		Elastic silt with or without	Sand		5 mm) to No. 200 (0.075 mm)							
ore-			МН	sand or gravel; sandy or gravelly elastic silt	Coarse Sand Medium Sand		5 mm) to No. 10 (2.00 mm) 00 mm) to No. 40 (0.425 mm)												
ĪŽ	lays or N				Fine Sand	`	425 mm) to No. 200 (0.075 mm)												
Fine-Grained 50% or More Passes	d C		СН	Clay of high plasticity; fat clay with or without	Silt and Clay	Smaller th	an No. 200 (0.075 mm)												
200	s an		СП	sand or gravel; sandy or gravelly fat clay		Modifier	Definitions												
	Silts and Clays				Percentage by Weight (Approx.)	Modifier													
	. <u>Ö</u> .	i iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	ОН	Organic clay or silt of medium to high plasticity	< 5	Trace (sar	nd, silt, clay, gravel)												
	υ	<u> </u>			5 to 14	Slightly (sa	andy, silty, clayey, gravelly)												
Highly	Organic Soils	<u> </u>	РТ	Peat, muck, and other	15 to 29	Sandy, silt	y, clayey, gravelly												
Ξ̈́	ي ج. ري	71/2 /11		highly organic soils	≥ 30	Very (sand	dy, silty, clayey, gravelly)												
ij	<u> </u>		FILL	Made Ground	field and/or laboratory obs plasticity estimates, and s	ervations, which include d hould not be construed to tratory classification metho	d as shown on the exploration logs are based on visua ensity/consistency, moisture condition, grain size, and imply field or laboratory testing unless presented herei dds of ASTM D2487 and D2488 were used as an System.												

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

EXPLORATION LOG KEY

Earth Solutions NWLLC

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-1

PROJ	ECT NUM	BER <u>ES-9150</u>				PROJECT NAME 10800 Van	cil Road S.E. Subdivision	
DATE	STARTE	D 4/24/23		COMPL	ETED 4/24/23	GROUND ELEVATION 358 ft		
EXCA	VATION (CONTRACTOR _C	Client P	rovided		LATITUDE 46.93068	LONGITUDE122.59518	
LOGG	ED BY _	SKH		CHECK	ED BY SSR	GROUND WATER LEVEL:		
NOTE	s					abla at time of exca	VATION	
SURF	ACE CON	DITIONS Field (Grass			AFTER EXCAVATI	ION	
	ш							
о ОЕРТН (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCR	RIPTION	
				<u>7, 1, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,</u>	Dark brown TOPSC	OIL, roots to 12"		
			TPSL	1/ 1/				
				·7.12	1.5			356.5
-	202			600		d GRAVEL with sand, medium	dense, damp	
	∰ GB	MC = 7.5			-probed 4"			
				600	-slight caving to BO	ш		
				00	-slight caving to bo	11		
5				20				
				600				
				20				
	000			600				
	∰ GB	MC = 8.3	4	200				
			GP	200				
			0	600				
				200				
10				600				
				200				
-								
				60				
				P00				
				000				
_ 1				624				
15	∰ GB	MC = 7.6		10°C	15.0			343.0
	·					at 15.0 feet below existing grad excavation. Caving observed	le due to caving. No groundwater from 3.0 feet to BOH.	
					surveyed. Coordinate this test log as a state	ates are approximate and based	eximate; the test location was not d on the WGS84 datum. Do not rely on the text of the geotechnical report for a	

Earth Solutions NWILC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-2

	MBER ES-9150			PROJECT NAME 10800 Vancil Road S.E. Subdivision	
				LATITUDE 46.9305 LONGITUDE -122.59428	
_				GROUND WATER LEVEL:	
NOTES				✓ AT TIME OF EXCAVATION	
1	NDITIONS Field	Grass		AFTER EXCAVATION	
O DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	CKAPHIC LOG	MATERIAL DESCRIPTION	
		TPSL ½		Dark brown TOPSOIL, roots to 12"	
		11 02/	1.0	Brown well-graded GRAVEL with sand, medium dense, damp	357.0
				Blown well-graded GIAAVEE with Sand, medium dense, damp	
₩ GB	MC = 5.8			-slight caving to BOH, probed 3"	
_					
5					
₩ GB	MC = 8.8	gw		[USDA Classification: extremely gravelly coarse SAND]	
- 101	Fines = 3.8	_/	7.		
7		•	7.9		
10					
		•	?!		
				haceman gray	
				-becomes gray	
₩ GB					044.0
<u> </u> OB	MC = 7.1		14.0	Test pit terminated at 14.0 feet below existing grade due to caving. No groundwater encountered during excavation. Caving observed from 2.0 feet to BOH.	344.0
				LIMITATIONS: Ground elevation (if listed) is approximate; the test location was not surveyed. Coordinates are approximate and based on the WGS84 datum. Do not rely on this test log as a standalone document. Refer to the text of the geotechnical report for a complete understanding of subsurface conditions.	ı

Earth Solutions NWLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-3

ATF S	STARTED	4/24/23	(COMPLET	ED 4/24/23 GROUND ELEVATION 360 ft	
					LATITUDE _46.93058 LONGITUDE122.59333	
					BY SSR GROUND WATER LEVEL:	
					∇ AT TIME OF EXCAVATION	
		OITIONS Field			AFTER EXCAVATION	
0 (#)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
			TPSI	1.0	Dark brown TOPSOIL, roots to 12"	
_			11 31	1.0		359
-W	00		_	000	Brown poorly graded GRAVEL with sand, medium dense, damp	
1	[¶] GB	MC = 5.2			-probed 3" -moderate caving to BOH	
				000	-moderate caving to born	
-						
1				00		
5						
				1000		
			GP			
				°ÕĞ		
				00		
4				%0 d		
				600		
-				000		
40				(° 0°)	-becomes gray	
10				000	booomoo gidy	
				000		
4	[™] GB			0 (11.		348
		MC = 7.8		<u>10) </u>	Test pit terminated at 11.5 feet below existing grade due to caving. No groundwater encountered during excavation. Caving observed from 2.0 feet to BOH.	0-10
					LIMITATIONS: Ground elevation (if listed) is approximate; the test location was not surveyed. Coordinates are approximate and based on the WGS84 datum. Do not rely on this test log as a standalone document. Refer to the text of the geotechnical report for a complete understanding of subsurface conditions.	

Earth Solutions NWLLC

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-4

PROJECT NUMBER ES-9150										
		•					-			
DATE STARTED 4/24/23 COMPLETED 4/24/23 EXCAVATION CONTRACTOR Client Provided										
LOGGED BY SKH CHECKED BY SSR								EONGITODE122.39339		
NOTES										
SURFACE CONDITIONS Field Grass										
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESC	RIPTION		
0			+	71 1× 71		Dark brown TOPS0	II roots to 12"			
			TPSI	L // _\./	1.0	Daik blown 101 30	71E, 100t3 to 12		360.0	
-				$10 \sim 1$	1.0	Brown poorly grade	d GRAVEL with sand, mediun	n dense, damp	360.0	
_										
	GB	MC = 6.8		60°		-moderate caving to	BOH			
				60		-probed 4"				
				600						
				Po						
5				000						
				600						
			GP	Po 01						
				000						
				200						
				629						
				000						
				%0 Q						
10				000						
				P00						
_				500						
	WW 0.5			000						
	[™] GB	MC = 9.3		[0,0,0]	12.0	Test nit terminated	at 12.0 feet below existing gra	de due to caving. No groundwater	349.0	
							excavation. Caving observed			
						surveyed. Coordin this test log as a st	ates are approximate and base	roximate; the test location was not ed on the WGS84 datum. Do not rely on the text of the geotechnical report for a		

Earth Solutions NWLLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-5

OTES			AT TIME OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION Dark brown TOPSOIL, roots to 12" Brown poorly graded GRAVEL with sand, medium dense, damp -moderate caving to BOH, probed 3"	
SAMPLE TYPE NUMBER	TESTS	Grass OP OF	MATERIAL DESCRIPTION Dark brown TOPSOIL, roots to 12" Brown poorly graded GRAVEL with sand, medium dense, damp	
SAMPLE TYPE NUMBER	TESTS	AB SAL U.S.C.S. O O O O O O O O O O O O O O O O O O O	MATERIAL DESCRIPTION Dark brown TOPSOIL, roots to 12" Brown poorly graded GRAVEL with sand, medium dense, damp	355.
-		TPSL 1.5	Dark brown TOPSOIL, roots to 12" Brown poorly graded GRAVEL with sand, medium dense, damp	355.
-	MC = 6.8	TPSL 1.5	Brown poorly graded GRAVEL with sand, medium dense, damp	355.
- GB	MC = 6.8	1.5 GP		355.
GB	MC = 6.8	GP		355.
∰ GB	MC = 6.8	GP 000	-moderate caving to BOH, probed 3"	
- GB	MC = 6.8	GP 000	-moderate daving to BOT, probed 3	
-		000		
5		5.0		352.
3		5.0	Brown well-graded GRAVEL with sand, medium dense, damp to moist	332.
-		GW		
-				
₩ GB				
GB GB	MC = 8.1 Fines = 4.7	13.0	[USDA Classification: extremely gravelly loamy coarse SAND] Test pit terminated at 13.0 feet below existing grade due to caving. Piezo installed. No	344.
			groundwater encountered during excavation. Caving observed from 2.5 feet to BOH.	
			LIMITATIONS: Ground elevation (if listed) is approximate; the test location was not surveyed. Coordinates are approximate and based on the WGS84 datum. Do not rely on this test log as a standalone document. Refer to the text of the geotechnical report for a complete understanding of subsurface conditions.	

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

TEST PIT NUMBER TP-6

		Fax: 425	5-449-47	711					
PROJ	ECT NUI	/BER FS-9150				PROJECT NAME 10800 Vancil Road S.E. Subdivision			
						4/24/23 GROUND ELEVATION 357 ft			
						LATITUDE _46.93002			
						GROUND WATER LEVEL:			
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRI	PTION 		
				<u> </u>	Dark brown TOPSOIL, roots to 12"				
	_ '		TPSI	L 1/2 24 1/2					
				1.5	Drown poorly gr	aded GRAVEL with sand, medium d	lana dama	355.5	
- 4	-	ĺ		600	-probed 3"	aded GRAVEL With Sand, medium d	ense, damp		
	'	ĺ		607	-probed o				
	₩ GB	MC = 7.7	\dashv	[0]	-slight caving to	BOH, probed 3"			
				000					
_	'			600					
5	-			000					
	'	ĺ	GP	[0,0,0]					
- 4	- '	ĺ		607					
	'	ĺ		[00]					
	1	ĺ		609					
		ĺ							
	'	ĺ		Po_0]					
	'	ĺ		9.0				348.0	
_ 7	'	ĺ			Brown well-grad	led GRAVEL with sand, medium den	ise, damp to moist		
10		ĺ							
	'	ĺ		29					
	'	ĺ							
	'	ĺ							
- 4	'	ĺ	GW						
	'	ĺ							
	'	ĺ							
	'	ĺ							
	'	ĺ							
15	_ '	ĺ		15.0				342.0	
	000	1	SW-		Brown well-grad	ded SAND with silt, medium dense to	dense, moist		
	∰ GB	MC = 10.9 Fines = 7.4	SM	16.0		cation: very gravelly loamy coarse SA		341.0	
		FIIIC3 - 1.7	_		Test pit terminat	ted at 16.0 feet below existing grade ring excavation. Caving observed from	Piezo installed. No groundwater	•	
					surveyed. Coord this test log as a		imate; the test location was not on the WGS84 datum. Do not rely on e text of the geotechnical report for a		

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-7

		IBER <u>ES-9150</u>					/ancil Road S.E. Subdivision	
						ROUND ELEVATION 35		
							LONGITUDE122.59519	
	S_				ED BY SSR GF		CAVATION	
		IDITIONS Field G					ATION	
001417		<u> </u>	1		_	A TEN EXOA		
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DES	SCRIPTION	
0				7, 18. 7, 1	Dark brown TOPSOIL,	roots to 12"		
			TPSL	17. 71.17	Bank Brown 101 0012,	1000 10 12		
				<u> </u>				355.5
				600	Brown poorly graded G	RAVEL with sand, medi	um dense, damp	
	00 OD	MO 7.0			-probed 3"			
	∰ GB	MC = 7.8		609	-moderate caving to B	DН		
				00				
				609				
5				69				
				603				
				69				
				609				
				307				
			GP	603				
				000				
				609				
10				609				
				600				
				307				
				600				
	₩ GB			600				
	() GB	MC = 7.2 Fines = 4.9	\vdash	00		extremely gravelly loamy		343.0
			=				grade due to caving. Piezo installed. No Caving observed from 3.0 feet to BOH.	
					surveyed. Coordinates this test log as a stand	are approximate and ba	oproximate; the test location was not ased on the WGS84 datum. Do not rely on to the text of the geotechnical report for a ns.	

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-8

PRO.I	FCT NUM	IBER <u>ES-9150</u>				PROJECT NAME _10800 Vancil Road S.E. Subdivision	
						GROUND ELEVATION 357 ft	_
						LATITUDE 46.92922 LONGITUDE -122.59478	
						GROUND WATER LEVEL:	
	s					_	
SURF	ACE CON	IDITIONS Field G				AFTER EXCAVATION	
	ш						
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION	
0				71 V	Dark brown TOPSC	DIL, roots to 12"	
			TPSL	17 111			
				<u>11.11.11</u>	1.5		355.5
				600	Brown poorly grade	d GRAVEL with sand, medium dense, damp	
	[™] ⁄⁄⁄⁄⁄⁄ GB	110 7.1			-probed 3"		
	∰ GB	MC = 7.4	-	609	-slight caving to BO	Н	
				000	g g		
				609			
5							
				609			
				000			
				60%			
				000			
				609			
			GP	00			
				600			
40							
10				1003			
				600			
				000			
				000			
				%0 d			
				500			
				000			
15	∰ GB	MC = 8.5		503	15.0		342.0
	·	(WO 0.0	,		Test pit terminated encountered during	at 15.0 feet below existing grade due to caving. No groundwater excavation. Caving observed from 3.0 feet to BOH.	
					surveyed. Coordina this test log as a sta	und elevation (if listed) is approximate; the test location was not lates are approximate and based on the WGS84 datum. Do not rely on andalone document. Refer to the text of the geotechnical report for a liding of subsurface conditions.	

Earth Solutions NWuc

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-9

	ECT NUM	1 1/2/1/22		COMPLETE	בפועפוע ס:	GROUND ELEVATION 358 ft				
							LONGITUDE -122.59398			
						GROUND WATER LEVEL:	EONGITODE122.39390			
							/ATION			
SUKF		DITIONS FIEID C	Jrass			AFTER EXCAVATION	ON			
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRII	PTION			
0			+	Z1 18. Z1	Dark brown TOPS	OIL, roots to 18"				
			TPSL	1/ 31/						
				1.5	,			356.5		
4	000					ed GRAVEL with silt and sand, mo	edium dense, damp			
	∰ GB	MC = 8.0 Fines = 5.3		Pall	-probed 4" IUSDA Classificati	on: extremely gravelly loamy coar	rse SANDI			
-					-slight caving to B		•			
				Pall	oligine daving to be	011				
.										
5										
.]				Paris						
			GP-							
			GM							
· 1				Para						
10										
				6219						
				543						
				6214	hocomos gray					
	€ GB			13 H	-becomes gray			0.45.0		
		MC = 8.1		<u> </u>		d at 13.0 feet below existing grade		345.0		
						g excavation. Caving observed from				
					surveyed. Coordir this test log as a s		imate; the test location was not on the WGS84 datum. Do not rely on etext of the geotechnical report for a			

Earth Solutions NWILE

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-10

CONTRACTOR (Grass O O O O O	CHECKED CRAPHIC LOG	ED _4/24/23	
DITIONS Field (Grass S. O.S. D.	GRAPHIC LOG LOG	BY SSR GROUND WATER LEVEL: AT TIME OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION	
DITIONS Field (Grass S.O.S.O.	GRAPHIC LOG	AFTER EXCAVATION MATERIAL DESCRIPTION	
DITIONS Field (Grass S.O.S.D	GRAPHIC LOG	MATERIAL DESCRIPTION	
	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
TESTS	U.S.C.	71.77.77		
	TPSL	1/ 71/	Dark brown TOPSOIL, roots to 12"	
	TPSL	1/ 71/		
		12 cm 31		
		1.5		357.5
		609	Brown poorly graded GRAVEL with sand, medium dense, damp	
MC = 7.9	-	0/0	-slight caving to BOH, probed 3"	
100 - 7.5			gg	
		60		
		10/01		
		200		
		1 (A)		
		200		
	GP	000		
		200		
		000		
		200		
		P. C. S.		
		200		
		1) ~ 1		
		rou	-becomes gray	
		503		
		000		245.5
MC = 7.9		<u>}</u> 6	Test pit terminated at 13.5 feet below existing grade due to caving. No groundwater	345.5
			encountered during excavation. Caving observed from 3.0 feet to BOH.	
			LIMITATIONS: Ground elevation (if listed) is approximate; the test location was not surveyed. Coordinates are approximate and based on the WGS84 datum. Do not rely on	
	MC = 7.9		G G	-becomes gray -becomes gray -becomes gray Test pit terminated at 13.5 feet below existing grade due to caving. No groundwater encountered during excavation. Caving observed from 3.0 feet to BOH. LIMITATIONS: Ground elevation (if listed) is approximate; the test location was not

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-11

		IBER <u>ES-9150</u>				PROJECT NAME 10800 Vand				
						BROUND ELEVATION 355 ft				
							LONGITUDE 122.59039			
					ED BY SSR C		VATION			
	S	IDITIONS Forest				$ar{egin{array}{cccccccccccccccccccccccccccccccccccc$				
SUKF	I	IDITIONS Folest	Juli			AFTER EXCAVATI	ON			
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCR	RIPTION			
0	0)			<u>17. 18. 17.</u>	Dark brown TORSOII	reate to 10"				
			TDSI	1/. 7.1/	Dark brown TOPSOI	_, 10018 10 10				
			IFSL	71/	1.5			353.5		
				600		GRAVEL with sand, medium	dense, damp	333.3		
	∰ GB	MC = 9.1		000	-probed 3"					
				000	-moderate caving to l	ВОН				
				600						
5				200						
				600						
				200						
_				200						
				200						
				629						
			CD	000						
			GP	600						
				503						
10				000						
				500						
				%0d						
				000						
				P04						
				000						
				000						
				000	-becomes gray					
				000	0 7					
15	∰ GB	MC = 5.3		600	15.0IUSDA Classification	ovtromoly gravally coarse SA	ANDI	340.0		
	,	Fines = 2.2	$\overline{}$			 extremely gravelly coarse SA 15.0 feet below existing grad 	e due to caving. Piezo installed. No			
							ng observed from 3.0 feet to BOH.			
					surveyed. Coordinat this test log as a star	es are approximate and based	ximate; the test location was not d on the WGS84 datum. Do not rely on the text of the geotechnical report for a			

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-12

DDO I	FOT NUM	IDED 50.0450					DDO IECT NAME (1000) Vana	ail Dand C.E. Cubdininian	
						A/2A/22	GROUND ELEVATION 356 ft	cil Road S.E. Subdivision	
								LONGITUDE122.59051	
							GROUND WATER LEVEL:		
								VATION	
								ON	
		<u> </u>	Т						
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCR	RIPTION	
0	u,		+-	1/2 <u>v. 1/2</u>		Dark brown TOPS0	III roots to 18"		
			TPS	Γ 7.7.7.		Daik blown 101 30	71E, 100t3 to 10		
			0.	<u> </u>	1.5				354.5
				600		Brown poorly grade	d GRAVEL with sand, medium	dense, damp	001.0
_	™ GB	MC = 7.0]			-probed 3"			
				600			POLL		
				10 0°		-moderate caving to) ROH		
				600					
5				P0 0					
				600					
				PO. 0					
				600					
			GP	600					
			GF	60					
				000					
				Poor					
10				000					
				000					
				000					
				000					
				60C					
				000					
	™ GB	MC = 6.0		000	14.0	ILICDA Classification		OWN CANDI	342.0
		Fines = 3.5		1-2-		Test pit terminated	on: extremely gravelly loamy coa at 14.0 feet below existing grade	le due to caving. Piezo installed. No ng observed from 3.0 feet to BOH.	0 12.0
						LIMITATIONS: Gro surveyed. Coordin this test log as a st	und elevation (if listed) is approates are approximate and based	ximate; the test location was not d on the WGS84 datum. Do not rely on the text of the geotechnical report for a	

Earth 1 Solutions R

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711 **TEST PIT NUMBER TP-13**

DDO 1	FOT NUM	IDED 50.0450			DDO IFOT NAME 40000 Versell Decad O. F. Ook disking	
					PROJECT NAME 10800 Vancil Road S.E. Subdivision 4/24/23 GROUND ELEVATION 351 ft	
		·	_		LATITUDE 46.93071 LONGITUDE -122.59075	
					/ SSR GROUND WATER LEVEL:	
					$oxed{oxed}$ AT TIME OF EXCAVATION	
					AFTER EXCAVATION	
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
0				7 <u>1 1</u> 8. 7 <u>1</u>	Dark brown TOPSOIL, roots to 18"	
			TPSI	Γ ₁ /		
				1.5		349.5
				600	Brown poorly graded GRAVEL with sand, medium dense, damp	
	[™] GB	MC = 7.3	_	000	-probed 3"	
	<u> </u>	WIO - 1.5	1	[· O·]		
_				000	-slight caving to BOH	
				000		
5				604		
			GP			
				000		
				000		
				200		
				600		
				000		
10				10.0	Brown well-graded GRAVEL with sand, medium dense, damp to moist	341.0
					, , ,	
			GW			
_						
	W 05					
15	∰ GB	MC = 4.8 Fines = 1.3	\vdash	15.0	[USDA Classification: extremely gravelly SAND]	336.0
			_		Test pit terminated at 15.0 feet below existing grade due to caving. Piezo installed. No groundwater encountered during excavation. Caving observed from 3.5 feet to BOH.	
					LIMITATIONS: Ground elevation (if listed) is approximate; the test location was not surveyed. Coordinates are approximate and based on the WGS84 datum. Do not rely on this test log as a standalone document. Refer to the text of the geotechnical report for a complete understanding of subsurface conditions.	

Earth Solutions NWILE

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-14

PROJ	ECT NUM	IBER ES-9150				PROJECT NAME 10800 Vand	cil Road S.E. Subdivision	
DATE	STARTE	D 4/25/23		COMPLE	TED 4/25/23	GROUND ELEVATION 355 ft		
EXCA	VATION (CONTRACTOR _C	lient F	Provided		LATITUDE 46.93064	LONGITUDE122.59146	
LOGG	ED BY	SKH		CHECKE	DBY SSR	GROUND WATER LEVEL:		
NOTE	s					$ar{oxtime}$ at time of exca	VATION	
SURF	ACE CON	IDITIONS Forest	Duff				ON	
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCR	RIPTION	
				7/ 1/2 · 7/	Dark brown TOPS	OIL, roots to 24"		
			TPSI					
				1.5		ODA)/ELth I It I	and the second s	353.5
					Brown well-graded	GRAVEL with sand, medium de	ense, damp to moist	
	₩ GB	MC = 8.8	-		-probed 3"			
	C/ GB	IVIC - 0.0	-		-moderate caving t	о ВОН		
					3			
5 -	€ GB	MC = 5.2 Fines = 1.5			[USDA Classificati	on: extremely gravelly coarse SA	AND]	
		1 11100 110	Gw					
	™ GB			12	5			342.5
	<u>(</u>	MC = 7.1) —	112	Test pit terminated	at 12.5 feet below existing grad g excavation. Caving observed f	e due to caving. No groundwater from 3.0 feet to BOH.	342.5
					surveyed. Coordir this test log as a st	ates are approximate and based	ximate; the test location was not d on the WGS84 datum. Do not rely on the text of the geotechnical report for a	

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-15

PROJ	ECT NUM	BER <u>ES-9150</u>			PROJECT NAME 10800 Vancil Road S.E. Subdivision	
					D <u>4/25/23</u> GROUND ELEVATION <u>356 ft</u>	
EXCA	VATION (CONTRACTOR _C	Client F	Provided	LATITUDE 46.93019 LONGITUDE -122.59	064
LOGG	ED BY	SKH		CHECKED B	Y SSR GROUND WATER LEVEL:	
NOTE	s				$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$	
SURF	ACE CON	DITIONS Forest	Duff		AFTER EXCAVATION	
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
0				7,18.77	Dark brown TOPSOIL, roots to 18"	
			TPSI	1/2 21/2	<u> </u>	
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		354.5
				600	Brown poorly graded GRAVEL with sand, medium dense, damp	
	∰ GB	MC = 10.6		601	-probed 3"	
				600		
				00	-moderate caving to BOH	
				60g	-moderate cavilig to BOH	
5				P0 0		
				000		
				20.01		
				000	-becomes gray	
-	000			Pool		
	∰ GB	MC = 8.5	4			
				Pool		
			GP	P04		
			0.	200		
10				600		
_				600		
				200		
- 4				000		
				200		
				000		
				200		
				000		
15				200		
				604		
	∰ GB	MC = 9.8		16.0	Test pit terminated at 16.0 feet below existing grade due to caving. No groundwate encountered during excavation. Caving observed from 3.5 feet to BOH.	340.0 er
					LIMITATIONS: Ground elevation (if listed) is approximate; the test location was no surveyed. Coordinates are approximate and based on the WGS84 datum. Do not this test log as a standalone document. Refer to the text of the geotechnical repor complete understanding of subsurface conditions.	rely on

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-16

EXCAVATION LOGGED BY _ NOTES SURFACE CON	CONTRACTOR (Client P	rovided CHECKED E	D _4/25/23 GROUND ELEVATION
SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
		TPSL	\(\frac{1}{2} \) \(\fra	Dark brown TOPSOIL, roots to 24"
5 GB	MC = 9.2 Fines = 4.3	GW	14.0	Brown well-graded GRAVEL with sand, medium dense, damp -probed 3" [USDA Classification: extremely gravelly loamy coarse SAND] -slight caving to BOH
	WO - 7.4	J		Test pit terminated at 14.0 feet below existing grade due to caving. No groundwater encountered during excavation. Caving observed from 3.5 feet to BOH. LIMITATIONS: Ground elevation (if listed) is approximate; the test location was not surveyed Coordinates are approximate and based on the WGS84 datum. Do not rely on this test log a standalone document. Refer to the text of the geotechnical report for a complete understand of subsurface conditions.

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

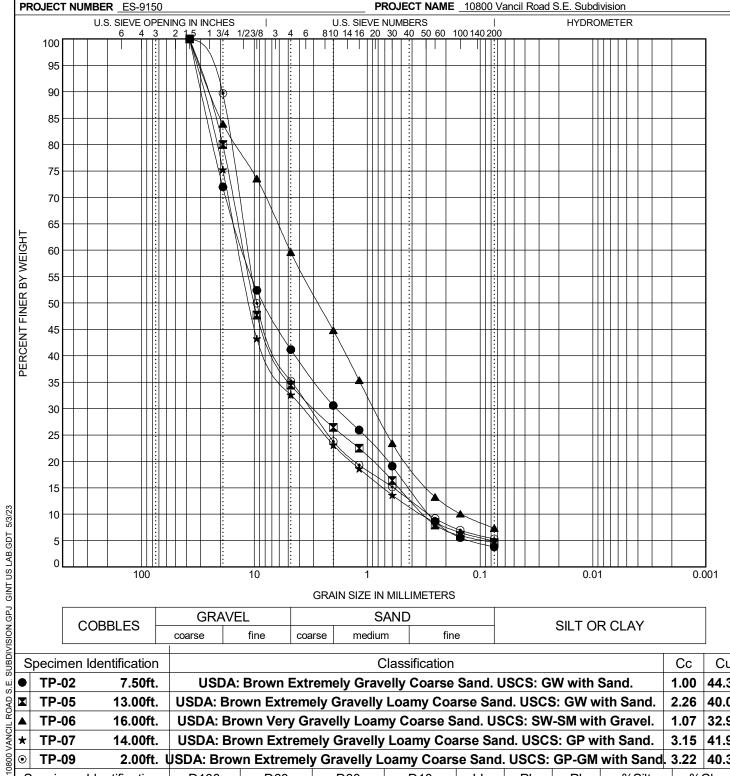
TEST PIT NUMBER TP-17

DATE STARTEI EXCAVATION O LOGGED BY S NOTES	O 4/25/23 CONTRACTOR C	COMPLE Client Provided CHECKE	ED BY SSR	PROJECT NAME			
SAMPLE TYPE NUMBER	TESTS	U.S.C.S. GRAPHIC LOG		MATERIAL DESCRIPTION			
5 GB	MC = 7.9	TPSL GP	.0	graded GRAVEL with sand, medium dense, damp			
GB	MC = 6.6	000	Test pit termina	nated at 12.0 feet below existing grade. No groundwater encountered during saving observed from 3.5 feet to BOH.			
			Coordinates are	: Ground elevation (if listed) is approximate; the test location was not surveyed. re approximate and based on the WGS84 datum. Do not rely on this test log as cument. Refer to the text of the geotechnical report for a complete understanding conditions.			

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-18


								""	
						4/05/00	PROJECT NAME 10800 V		
							GROUND ELEVATION 361	π LONGITUDE -122.59252	
							GROUND WATER LEVEL:	LONGITUDE122.39232	
								CAVATION	
		IDITIONS Forest						ATION	
-		<u> </u>	<u> </u>				7.1.1.2.1.2.1.1.		
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DES	CRIPTION	
				12. 18. 12		Dark brown TOPSO	DIL, roots to 18"		
			TPSI	L 1/2 × 1/2					
				900 700	1.5		1004)(51)(1		359.5
				[0,0]		Brown poorly grade	d GRAVEL with sand, mediu	m dense, damp	
	∰ GB	MC = 8.4				-probed 4"			
				0000		-slight caving to BC	Н		
5				000					
				600					
				000					
				600					
				200					
			GP	600					
				200					
				600					
				000					
10				600					
				000					
				600					
				200					
				600					
				000					
	™ GB	MC = 4.8		000	13.5			;	347.5
	·		,				at 13.5 feet below existing grexcavation. Caving observe	ade due to caving. No groundwater defined to BOH.	
						surveyed. Coordin this test log as a st	ates are approximate and bas	proximate; the test location was not sed on the WGS84 datum. Do not rely on the text of the geotechnical report for a s.	
ı									

Appendix B Laboratory Test Results ES-9150

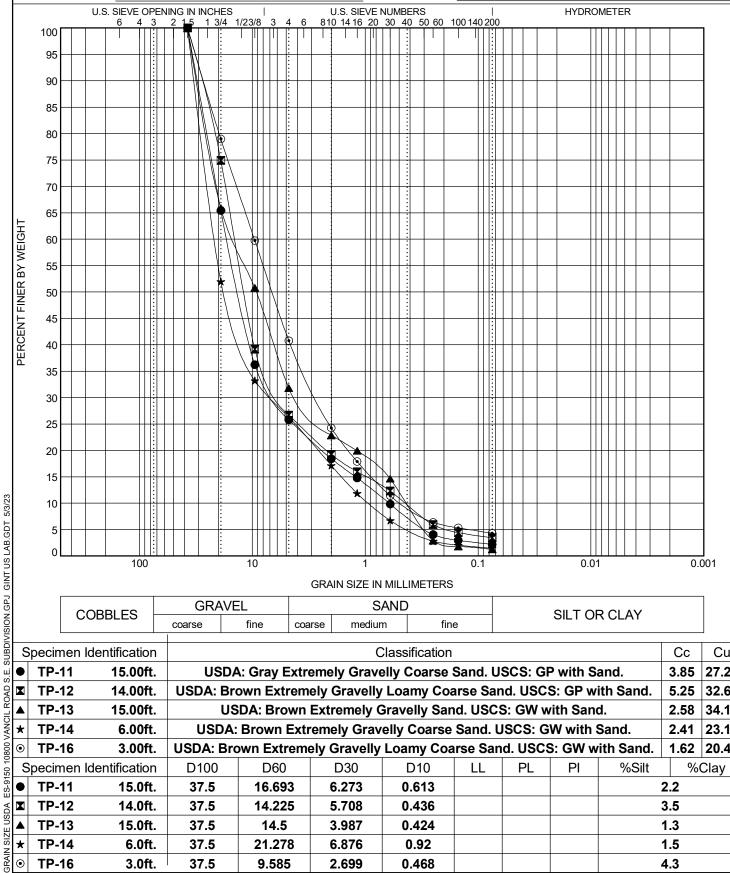
Earth Solutions NW_{LLC}

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

H							
L	Specimen I	dentification	Classification				
	● TP-02	7.50ft.	USDA: Brown Extremely Gravelly Coarse Sand. USCS: GW with Sand.	1.00	44.36		
Ī	▼ TP-05	13.00ft.	USDA: Brown Extremely Gravelly Loamy Coarse Sand. USCS: GW with Sand.	2.26	40.04		
ſ	▲ TP-06	16.00ft.	USDA: Brown Very Gravelly Loamy Coarse Sand. USCS: SW-SM with Gravel.	1.07	32.95		
Ī	★ TP-07	14.00ft.	USDA: Brown Extremely Gravelly Loamy Coarse Sand. USCS: GP with Sand.	3.15	41.95		
	⊙ TP-09	2.00ft. l	SDA: Brown Extremely Gravelly Loamy Coarse Sand. USCS: GP-GM with Sand	3.22	40.31		
, _							

50 1	Specimen Identification			D100	D60	D30	D10	LL	PL	PI	%Silt	%Clay
-S-91	• TP-	02 7	'.5ft.	37.5 12.425 1.868 0.28			3.8					
DA E	▼ TP-	05 13	.0ft.	37.5	12.362	2.94	0.309				4.7	
E US	▲ TP-	06 16	.0ft.	37.5	4.834	0.87	0.147				7	.4
N SIZ	★ TP-	07 14	.0ft.	37.5	13.65	3.741	0.325				4	.9
3RAI	TP-	09 2	.0ft.	37.5	11.317	3.196	0.281				5	.3


Earth Solutions **NWILE**

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

PROJECT NUMBER ES-9150

PROJECT NAME 10800 Vancil Road S.E. Subdivision

۱ د													
	S	pecimen Id	entification		Classification							Сс	Cu
֓֞֜֜֞֜֞֜֞֜֓֓֞֜֜֞֜֓֡֓֜֜֞֜֞֜֓֓֡֡֡֡֡֡֡	•	TP-11	15.00ft.	USDA	USDA: Gray Extremely Gravelly Coarse Sand. USCS: GP with Sand.						3.85	27.25	
	X	TP-12	14.00ft.	USDA: Bro	JSDA: Brown Extremely Gravelly Loamy Coarse Sand. USCS: GP with Sand.					5.25	32.63		
	A	TP-13	15.00ft.	US	USDA: Brown Extremely Gravelly Sand. USCS: GW with Sand.					2.58	34.17		
	*	TP-14	6.00ft.	USDA:	USDA: Brown Extremely Gravelly Coarse Sand. USCS: GW with Sand.					2.41	23.12		
	•	TP-16	3.00ft.	USDA: Bro	wn Extrem	ely Gravelly	Loamy Coa	arse Sar	d. USCS	S: GW w	ith Sand.	1.62	20.48
3	S	pecimen Id	entification	D100	D60	D30	D10	LL	PL	PI	%Silt	%	Clay
5	•	TP-11	15.0ft.	37.5	16.693	6.273	0.613					2.2	
5	lacksquare	TP-12	14.0ft.	37.5	14.225	5.708	0.436					3.5	
3	A	TP-13	15.0ft.	37.5	14.5	3.987	0.424					1.3	
202	*	TP-14	6.0ft.	37.5	21.278	6.876	0.92					1.5	
3	•	TP-16	3.0ft.	37.5	9.585	2.699	0.468					4.3	

Report Distribution

ES-9150

Copper Ridge, LLC P.O. Box 73790 **EMAIL ONLY**

Puyallup, Washington 98373

Attention: Evan Mann

Country Meadows Estates Phase 1 Staff Report Supplement Exhibit D: Stormwater Report

Stormwater Report

PREPARED FOR:

Mr. Evan Mann Copper Ridge LLC PO Box 73790 Puyallup, WA 98373-0790

PROJECT:

County Meadows Estates Phase 1 Preliminary Plat Yelm, Washington 2230251.10

PREPARED BY:

Chris Flyckt, PE Project Engineer

REVIEWED BY:

J. Matthew Weber, PE Principal

DATE:

August 2023

TTHEW WE OF WASHINGTON OF WASH

08/11/2023

I hereby state that this Stormwater Report for County Meadows Estates Phase 1 Preliminary Plat has been prepared by me or under my supervision and meets the standard of care and expertise that is usual and customary in community professional this for engineers. I understand that City of Yelm does not and will not assume liability for sufficiency, suitability, performance of drainage facilities prepared by me.

Stormwater Report

PREPARED FOR:

Mr. Evan Mann Copper Ridge LLC PO Box 73790 Puyallup, WA 98373-0790

PROJECT:

County Meadows Estates Phase 1 Preliminary Plat Yelm, Washington 2230251.10

PREPARED BY:

Chris Flyckt, PE Project Engineer

REVIEWED BY:

J. Matthew Weber, PE Principal

DATE:

August 2023

Table of Contents

Secti	on		Page				
1.0	Proje	ct Overview	1				
2.0	Summary of Minimum Requirements						
	2.1	MR 1 – Preparation of Stormwater Site Plans	1				
	2.2	MR 2 - Construction Stormwater Pollution Prevention	1				
	2.3	MR 3 – Source Control of Pollution	1				
	2.4	MR 4 – Preservation of Natural Drainage Systems and Outfalls	1				
	2.5	MR 5 – Onsite Stormwater Control	1				
	2.6	MR 6 – Runoff Treatment	2				
	2.7	MR 7 – Flow Control	2				
	2.8	MR 8 – Wetlands Protection					
	2.9	MR 9 – Basin/Watershed Planning					
	2.10	MR 10 – Operation and Maintenance	2				
3.0	Existi	ing Conditions	2				
4.0	Soils Reports						
5.0	Wells	·	2				
6.0	Fuel 1	Tanks	3				
7.0	Sub-E	Basin Description	3				
8.0	Analy	sis of the 100-Year Flood	3				
9.0	Aesth	netic Considerations for Facilities	3				
10.0	Facili	ty Sizing and Downstream Analysis	3				
	10.1	Conveyance					
	10.2	Treatment	3				
	10.3	Flow Control	3				
	10.4	Roof Runoff	4				
11.0	Cove	nants Dedications, Easements	4				
12.0	Prope	erty Owners Association Articles of Incorporation	4				
13.0	Conc	lusion	4				

Appendices

Appendix A

Exhibits

A-1	Vicinity Map
	NRCS Soil Map
	Developed Basin Map
	FEMA 100-Year Flood Plain Man

Appendix B

Stormwater Facility Sizing Calculations

B-1..... WWHM Report B-2..... Basin Map

Appendix C

Geotechnical Report

Earth Solutions NW, LLC June 14, 2023

1.0 Project Overview

The following hydrology report summarizes the storm drainage analysis and design for a 59-lot development located at the 10800 Vancil Road SE Subdivision in Yelm, Thurston County, Washington. The land is currently a 9.84-acre property. The project includes the addition of 59 residential lots for single-family homes, a new roadway and sidewalks, sewer, water services, and stormwater facilities to treat and dispose of the project's stormwater. The proposed roadway features and utilities will be extended from Vancil Road SE.

No offsite road improvements will be required, other than frontage improvements along Vancil Road SE.

The 9.84-acre site is located in Section 30, Township 17 North, Range 02 East, W.M. The Thurston County tax parcel number associated with the project is 22730410300.

The increased stormwater runoff resulting from the addition of impervious area will be treated and infiltrated in accordance with the most recent Washington State Department of Ecology Stormwater Management Manual for Western Washington (SWMMWW).

2.0 Summary of Minimum Requirements

This project is subject to the *SWMMWW* and is a new development that will add more than 10,000 square feet of impervious surfaces; therefore, all Minimum Requirements (MR) apply to this project.

2.1 MR 1 – Preparation of Stormwater Site Plans

This report and the project plans represent the Stormwater Site Plan for this project and satisfy MR 1.

2.2 MR 2 - Construction Stormwater Pollution Prevention

A Construction Stormwater Pollution Prevention Plan (SWPPP) will be prepared with final engineering.

2.3 MR 3 – Source Control of Pollution

Pollution source control will be provided for the site by separating roof runoff from pollution generating surfaces. The residential roads should be maintained and cleaned of debris, garbage, and sediment, as required.

The Construction SWPPP, addressing MR 3, will be prepared with final engineering.

2.4 MR 4 – Preservation of Natural Drainage Systems and Outfalls

The project proposes to infiltrate all stormwater runoff, so all runoff will be retained in the developed condition. There are no natural drainage systems or outfalls to preserve.

2.5 MR 5 – Onsite Stormwater Control

This project will meet the Low Impact Development (LID) Performance Standard. The onsite soils have a high infiltration capacity and all runoff will be retained onsite through treatment systems and infiltration facilities. The LID Performance Standard will be met by infiltrating all stormwater runoff from the site. Refer to Section 10.0 for facility sizing.

2.6 MR 6 – Runoff Treatment

Over 5,000 square feet of pollution generating impervious surface (PGIS) will be added as part of these improvements; therefore, runoff treatment is required for this site. Stormwater from the roadways will be conveyed to stormwater treatment filters before being infiltrated. One distinct basin will convey stormwater to a treatment system and infiltration trench. Final treatment system sizing will be completed with final engineering.

2.7 MR 7 – Flow Control

The project exceeds the thresholds for new development projects and must provide flow control. Proposed flow control is achieved with the use of infiltration trenches that will infiltrate 100 percent of runoff. Refer to Section 10.0 for facility sizing.

2.8 MR 8 – Wetlands Protection

To our knowledge, no wetlands are located on or adjacent to the site.

2.9 MR 9 - Basin/Watershed Planning

To our knowledge, no basin plans exist for the site. All of Yelm is within a critical aquifer recharge area. Treatment of stormwater prior to infiltration is proposed via media filter manholes. Final sizing of the treatment system will be done with final engineering.

2.10 MR 10 – Operation and Maintenance

The stormwater system for the roadway improvements will be publicly owned and maintained. City of Yelm shall be responsible for the operation and maintenance of the public stormwater facilities. An Operation and Maintenance Plan consisting of maintenance checklists for stormwater management will be prepared with final engineering. Operation and maintenance for drainage facilities constructed for each lot shall be the responsibility of the individual owners.

3.0 Existing Conditions

The site is presently covered with grass, with slopes ranging from 0 to 3 percent.

4.0 Soils Reports

Site soils are identified by the Natural Resources Conservation Service (NRCS) Web Soil Survey as Spanaway gravelly sandy loam, a Type A soil. This soil is characterized as very deep, somewhat excessively drained.

Earth Solutions NW, LLC conducted a site investigation to confirm subsurface soil conditions and establish a design infiltration rate. Soil test holes were dug in the vicinity of the proposed infiltration basins of the project and observations confirm that the soil types match the SCS soil description. A soil log map showing the location of the test holes is included in the geotechnical report. The report recommends a design infiltration rate of 20 inches per hour. Refer to Appendix C for the complete Earth Solutions NW report.

5.0 Wells

To our knowledge, no wells are located onsite.

6.0 Fuel Tanks

No fuel tanks were observed at the project site.

7.0 Sub-Basin Description

From review of site topography, it does not appear that offsite runoff is tributary to the site from the north or west. The east half of Vancil Road SE does not have a curb and therefore does appear to infiltrate along the shoulder of the roadway.

There is one basin in the developed condition. It contains a treatment and infiltration system to manage runoff from the plat roads, landscape areas, on-lot driveways and the half-street widening of Vancil Road SE. The impervious areas used for determining flow control and water treatment do not include individual lots. On-lot runoff will be collected and infiltrated in individual drywells. Refer to Appendix A-3 for the Developed Basin Map. Drywell sizing will be provided with final engineering.

8.0 Analysis of the 100-Year Flood

Federal Emergency Management Agency (FEMA) mapping does not indicate flooding in the immediate area. Refer to the exhibit in Appendix A-4.

9.0 Aesthetic Considerations for Facilities

The proposed stormwater infiltration facilities will be underground and have minimal impact to the aesthetics of the site.

10.0 Facility Sizing and Downstream Analysis

The stormwater system was sized and analyzed using the latest edition of the Western Washington Hydrology Model (WWHM) continuous modeling software. Conservative infiltration rates of 20 inches per hour were used for the design calculations.

10.1 Conveyance

Conveyance sizing will be completed with final engineering.

10.2 Treatment

Basic treatment will be provided via media filter cartridge manholes/catch basins. Final sizing will be completed with final engineering.

10.3 Flow Control

Flow control will be provided by an infiltration trench. The basin will have a single trench.

Basin A will have a 4.0-foot deep trench with a bottom area of 4,000 square feet that will be constructed in the open space in Tract A.

Infiltration Basin Summary

Basin	Pervious Area (ac)	Impervious Area (ac)	Required Trench Area (sf)	Percent Infiltrated
Α	3.58	2.87	-	-
В	0	0.43	-	-
TOTAL	3.58	3.3	4,000	100

The remaining 3.39 acres on the site are assumed to be covered by roofs; 2,500 square feet per lot was used as an impervious roof assumption. This runoff will be infiltrated by individual roof downspout infiltration trenches on each lot and, as such, is not included in the model.

The infiltration basin was sized in accordance with the *SWMMWW* and exceeds the required storage volumes.

10.4 Roof Runoff

Stormwater for the roof area of the homes will be infiltrated in individual drywells. The drywells will be sized in accordance with *SWMMWW* Volume 3, Chapter 3, Section 3.1.1 - BMP T5.10A Downspout Full Infiltration System. Refer to Appendix B-1 for the roof downspout system detail.

11.0 Covenants Dedications, Easements

The storm facilities for the right-of-way improvements shall be publicly owned and maintained. A maintenance agreement should be executed to ensure future maintenance of the facilities. The on-lot systems will be privately owned and maintained and therefore do not require covenants, dedications, or easements.

12.0 Property Owners Association Articles of Incorporation

Not applicable.

13.0 Conclusion

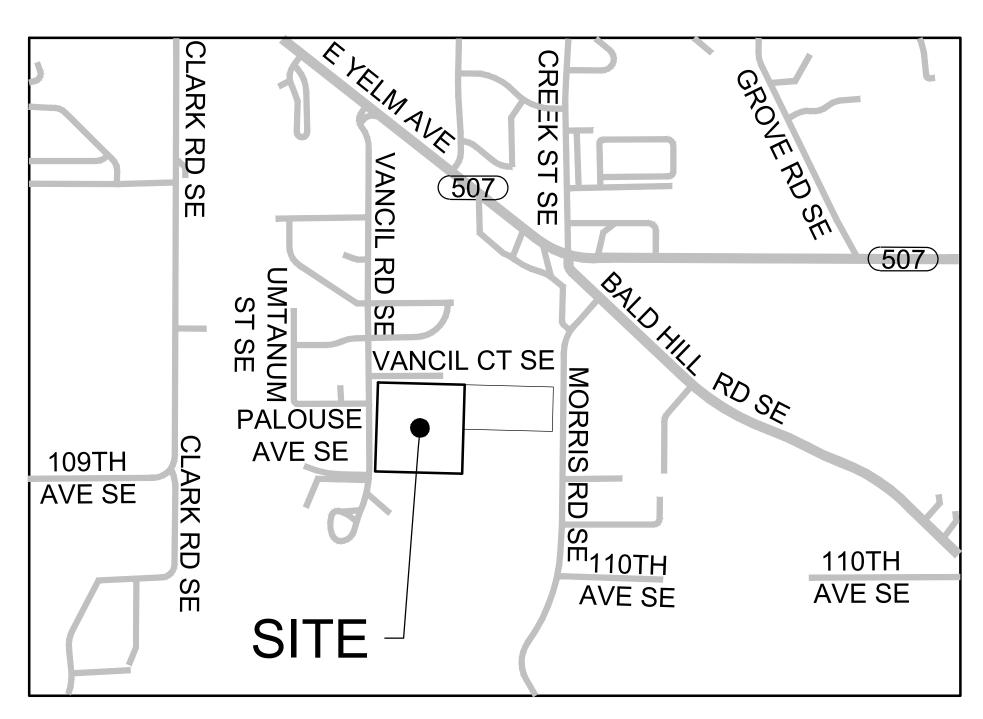
The proposed project involves site improvements associated with a 59-lot development. The project includes clearing, grading, erosion control, utility improvements, and stormwater management facilities. The site, as proposed, will meet the requirements of the most recent Department of Ecology *Stormwater Management Manual for Western Washington (SWMMWW)*. This report and associated plans have been prepared within the guidelines established by City of Yelm for stormwater management.

This analysis is based on data and records either supplied to or obtained by AHBL. These documents are referenced within the text of the analysis. The analysis has been prepared using procedures and practices within the standard accepted practices of the industry.

AHBL, Inc. Chris Flyckt, PE Project Engineer

CF/lsk

August 2023


Q:\2023\2230251\WORDPROC\Reports\20230811 Rpt (Storm) 2230251.10.docx

Appendix A

Exhibits

A-1	Vicinity Map
A-2	NRCS Soil Map
A-3	Developed Basin Map
A-4	FFMA 100-Year Flood Plain Mai

VICINITY MAP

SCALE: 1" = 660' (1/8 MILE)

2215 North 30th Street,
Suite 300,
Tacoma, WA 98403
253.383.2422 TEL

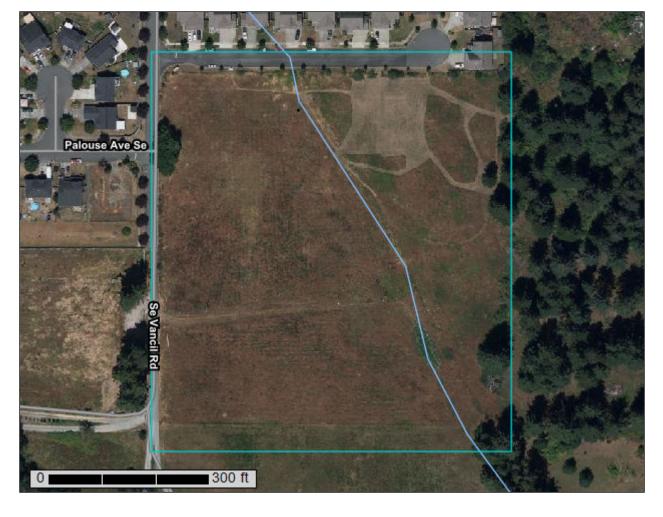
253.383.2572 FAX

Preliminary Plat Phase 1
VICINITY MAP

Country Meadows Estate

JOB NO.

DATE:


A-1

VRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Thurston County Area, Washington

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	10
Map Unit Legend	11
Map Unit Descriptions	
Thurston County Area, Washington	13
110—Spanaway gravelly sandy loam, 0 to 3 percent slopes	13
112—Spanaway stony sandy loam, 0 to 3 percent slopes	13
References	15

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Page 143 of 228

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

-

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

ဖ

Blowout

 \boxtimes

Borrow Pit

Ж

Clay Spot

 \wedge

Closed Depression

Š

'

۰

Gravelly Spot

0

Landfill Lava Flow

Gravel Pit

Marsh or swamp

Ø.

Mine or Quarry

X

Miscellaneous Water

0

Perennial Water

U

Rock Outcrop

+

Saline Spot

. .

Sandy Spot

-

Severely Eroded Spot

Sinkhole

24

Slide or Slip

Ø

Sodic Spot

__.._

8

Spoil Area Stony Spot

00

Very Stony Spot

3

Wet Spot Other

Δ

Special Line Features

Water Features

_

Streams and Canals

Transportation

ransp

Rails

~

Interstate Highways

~

US Routes

 \sim

Major Roads

~

Local Roads

Background

Marie Contract

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Thurston County Area, Washington Survey Area Data: Version 16, Sep 8, 2022

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Jul 18, 2020—Jul 20, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
110	Spanaway gravelly sandy loam, 0 to 3 percent slopes	8.5	73.4%
112	Spanaway stony sandy loam, 0 to 3 percent slopes	3.1	26.6%
Totals for Area of Interest		11.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,

Custom Soil Resource Report

onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Thurston County Area, Washington

110—Spanaway gravelly sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2ndb6 Elevation: 330 to 1,310 feet

Mean annual precipitation: 35 to 65 inches Mean annual air temperature: 50 degrees F

Frost-free period: 150 to 200 days

Farmland classification: Prime farmland if irrigated

Map Unit Composition

Spanaway and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Spanaway

Setting

Landform: Terraces, outwash plains

Parent material: Volcanic ash over gravelly outwash

Typical profile

H1 - 0 to 15 inches: gravelly sandy loam
H2 - 15 to 20 inches: very gravelly loam
H3 - 20 to 60 inches: extremely gravelly sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.8 inches)

Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 3s

Hydrologic Soil Group: A

Ecological site: R002XA006WA - Puget Lowlands Prairie
Forage suitability group: Droughty Soils (G002XS401WA)
Other vegetative classification: Droughty Soils (G002XS401WA)

Hydric soil rating: No

112—Spanaway stony sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2ndb8

Custom Soil Resource Report

Elevation: 660 to 1,310 feet

Mean annual precipitation: 35 to 65 inches Mean annual air temperature: 50 degrees F

Frost-free period: 150 to 200 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Spanaway and similar soils: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Spanaway

Setting

Landform: Terraces, outwash plains

Parent material: Volcanic ash over gravelly outwash

Typical profile

H1 - 0 to 16 inches: stony sandy loam

H2 - 16 to 22 inches: very gravelly sandy loam H3 - 22 to 60 inches: extremely gravelly sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat excessively drained

Capacity of the most limiting layer to transmit water (Ksat): High (1.98 to 5.95

in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4s

Hydrologic Soil Group: A

Ecological site: R002XA006WA - Puget Lowlands Prairie Forage suitability group: Droughty Soils (G002XS401WA)
Other vegetative classification: Droughty Soils (G002XS401WA)

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

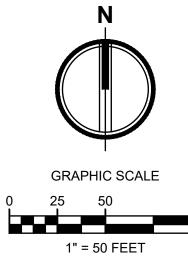
United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

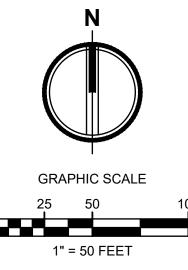
Custom Soil Resource Report

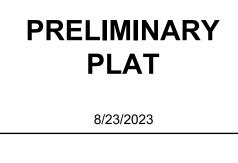
United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242


United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Know what's below. Call before you dig.


COUNTRY MEADOWS ESTATES PHASE 1 PRELIMINARY PLAT


A PORTION OF THE NE 1/4 OF THE SE 1/4 OF SEC. 30, TWN. 17 N., RGE. 02 E., W.M., CITY OF YELM, THURSTON COUNTY, WASHINGTON.

ROOF RUNOFF NOTE

ROOF RUNOFF WILL BE INFILTRATED WITHIN THE PRIVATE SYSTEM LOCATED ON EACH LOT.

2215 North 30th Street, Suite 300 Tacoma, WA 98403

COUNTRY

MEADOWS ESTATES

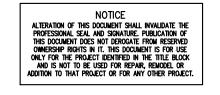
PHASE 1

PRELIMINARY PLAT

COPPER RIDGE LLC

P.O.BOX 73790 PUYALLUP, WA 98373

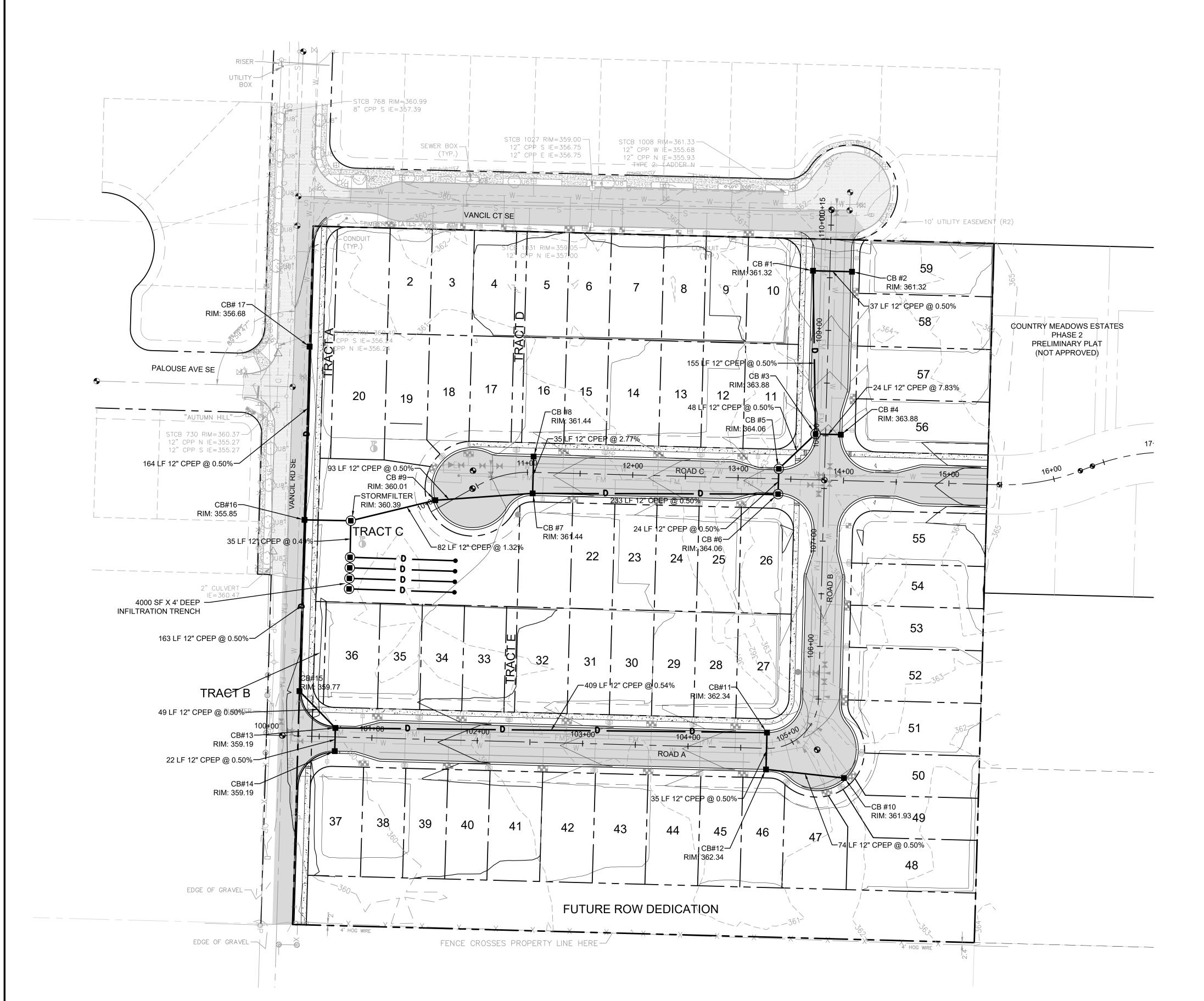
KURT WILSON / EVAN MANN


2230251.10

Project Title:

Project No.

Issue Set & Date:



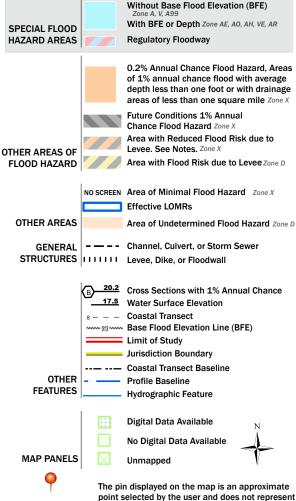
DEVELOPED CONDITIONS MAP

<u>Drawn by:</u>

Checked by:

A-3

National Flood Hazard Layer FIRMette



PageBasanota Pagery Source: USGS National Map 2023

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 7/18/2023 at 3:46 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

Appendix B

Stormwater Facility Sizing Calculations

B-1.....WWHM Report B-2....Basin Map

WWHM2012 PROJECT REPORT

General Model Information

Project Name: 20230803 CountryMeadowsPhase1PrelimSizing

Site Name: Country Meadows Estates Phase 1

Site Address:

City: Yelm Report Date: 8/9/2023

Gage: Lake Lawrence

 Data Start:
 1955/10/01

 Data End:
 2008/09/30

 Timestep:
 15 Minute

Precip Scale: 0.857

Version Date: 2021/08/18

Version: 4.2.18

POC Thresholds

Low Flow Threshold for POC1: 50 Percent of the 2 Year

High Flow Threshold for POC1: 50 Year

Landuse Basin Data Predeveloped Land Use

Basin 1

Bypass: No

GroundWater: No

Pervious Land Use acre A B, Forest, Flat 6.88

Pervious Total 6.88

Impervious Land Use acre

Impervious Total 0

Basin Total 6.88

Element Flows To:

Surface Interflow Groundwater

Mitigated Land Use

Road A/B

Bypass: No

GroundWater: No

Pervious Land Use acre A B, Lawn, Flat 3.58

Pervious Total 3.58

Impervious Land Use acre ROADS FLAT 3.3

Impervious Total 3.3

Basin Total 6.88

Element Flows To:

Surface Interflow Groundwater

Gravel Trench Bed 1 Gravel Trench Bed 1

Routing Elements Predeveloped Routing

Mitigated Routing

Gravel Trench Bed 1

Bottom Length: 62.94 ft. Bottom Width: 62.94 ft. Trench bottom slope 1: 0 To 1 Trench Left side slope 0: 0 To 1 Trench right side slope 2: 0 To 1 Material thickness of first layer: Pour Space of material for first layer: 0.33 Material thickness of second layer: 1 Pour Space of material for second layer: 0.33 Material thickness of third layer: 2 0.33 Pour Space of material for third layer: Infiltration On Infiltration rate: 20 Infiltration safety factor: 1 Total Volume Infiltrated (ac-ft.): 582.111 Total Volume Through Riser (ac-ft.): 0.001 Total Volume Through Facility (ac-ft.): 582.112 Percent Infiltrated: 100 Total Precip Applied to Facility: 0 Total Evap From Facility: 0

Discharge Structure

Riser Height: 4 ft. Riser Diameter: 10 in.

Element Flows To:

Outlet 1 Outlet 2

Gravel Trench Bed Hydraulic Table

Stage(feet) 0.0000	Area(ac.) 0.091	Volume(ac-ft.) 0.000	Discharge(cfs)	Infilt(cfs)
0.0444	0.091	0.000	0.000	1.834
0.0889	0.091	0.001	0.000	1.834
0.1333	0.091	0.002	0.000	1.834
0.1778	0.091	0.005	0.000	1.834
0.2222	0.091	0.006	0.000	1.834
0.2667	0.091	0.008	0.000	1.834
0.3111	0.091	0.009	0.000	1.834
0.3556	0.091	0.010	0.000	1.834
0.4000	0.091	0.012	0.000	1.834
0.4444	0.091	0.013	0.000	1.834
0.4889	0.091	0.014	0.000	1.834
0.5333	0.091	0.016	0.000	1.834
0.5778	0.091	0.017	0.000	1.834
0.6222	0.091	0.018	0.000	1.834
0.6667	0.091	0.020	0.000	1.834
0.7111	0.091	0.021	0.000	1.834
0.7556	0.091	0.022	0.000	1.834
0.8000	0.091	0.024	0.000	1.834
0.8444	0.091	0.025	0.000	1.834
0.8889	0.091	0.026	0.000	1.834
0.9333	0.091	0.028	0.000	1.834
0.9778	0.091	0.029	0.000	1.834
1.0222	0.091	0.030	0.000	1.834

3.6444	0.091	0.109	0.000	1.834
3.6889	0.091	0.110	0.000	1.834
3.7333	0.091	0.112	0.000	1.834
3.7778	0.091	0.113	0.000	1.834
3.8222	0.091	0.114	0.000	1.834
3.8667	0.091	0.116	0.000	1.834
3.9111	0.091	0.117	0.000	1.834
3.9556	0.091	0.118	0.000	1.834
4.0000	0.091	0.120	0.000	1.834

Analysis Results POC 1

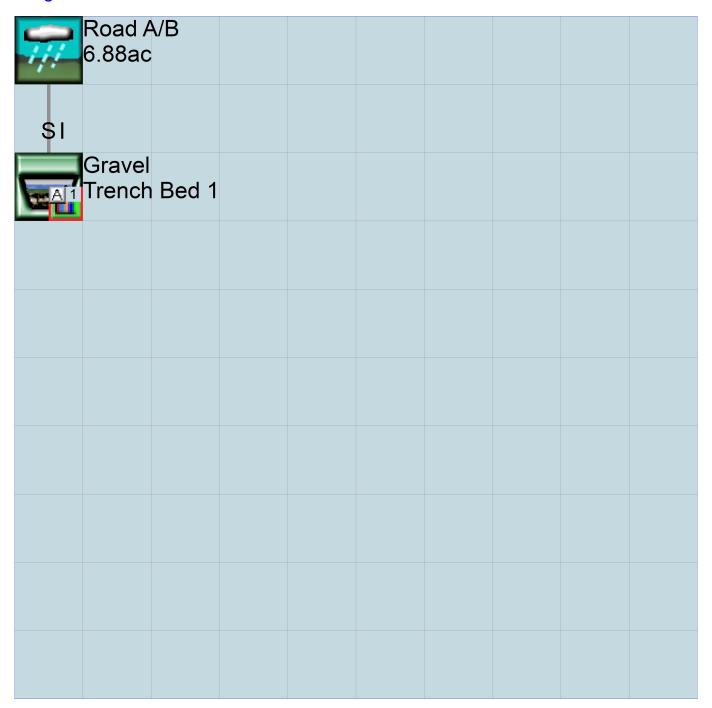
POC #1 was not reported because POC must exist in both scenarios and both scenarios must have been run.

Model Default Modifications

Total of 0 changes have been made.

PERLND Changes

No PERLND changes have been made.


IMPLND Changes

No IMPLND changes have been made.

Appendix Predeveloped Schematic

Basin 6.88ac	1			

Mitigated Schematic

Predeveloped UCI File RUN GLOBAL WWHM4 model simulation END Enu 2008 09 30 START 1955 10 01 RUN INTERP OUTPUT LEVEL RESUME 0 RUN 1 UNIT SYSTEM 1 END GLOBAL FILES <File> <Un#> <-----File Name---->*** <-ID-> 26 MDM 20230803 CountryMeadowsPhase1PrelimSizing.wdm MESSU 25 Pre20230803 CountryMeadowsPhase1PrelimSizing.MES 27 Pre20230803 CountryMeadowsPhase1PrelimSizing.L61 Pre20230803 CountryMeadowsPhase1PrelimSizing.L62 END FILES OPN SEQUENCE INGRP INDELT 00:15 PERLND END INGRP END OPN SEQUENCE DISPLY DISPLY-INFO1 # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND END DISPLY-INFO1 END DISPLY COPY TIMESERIES # - # NPT NMN *** 1 1 1 1 END TIMESERIES END COPY GENER OPCODE # # OPCD *** END OPCODE PARM K *** # END PARM END GENER PERLND GEN-INFO <PLS ><-----Name----->NBLKS Unit-systems Printer *** User t-series Engl Metr *** in out A/B, Forest, Flat 1 1 1 1 END GEN-INFO *** Section PWATER*** ACTIVITY <PLS > ******** Active Sections ********************* # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *** 1 0 0 1 0 0 0 0 0 0 0 0 1 END ACTIVITY <PLS > ********** Print-flags ******************************* PIVL PYR # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC *********
1 0 0 4 0 0 0 0 0 0 0 0 0 1 9 END PRINT-INFO

PWAT-PARM1

END PWAT-PARM1

0 0 0 0 0 0 0 0

<PLS > PWATER variable monthly parameter value flags ***
- # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***

```
PWAT-PARM2
  END PWAT-PARM2
 PWAT-PARM3
           PWATER input info: Part 3
  <PLS >
   # - # ***PETMAX PETMIN INFEXP
1 0 0 2
                                  INFILD DEEPFR BASETP AGWETP
  1
                                           0
 END PWAT-PARM3
 PWAT-PARM4
           PWATER input info: Part 4
                                                       * * *
  <PLS >
  # - # CEPSC UZSN NSUR INTFW IRC LZETP ***
1 0.2 0.5 0.35 0 0.7 0.7
 END PWAT-PARM4
 PWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
        ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
  # - # *** CEPS SURS UZS IFWS LZS AGWS 1 0 0 0 0 3 1
                                                          GWVS
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
  <PLS ><-----> Unit-systems Printer ***
            User t-series Engl Metr ***
  # - #
                            in out
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
  # - # ATMP SNOW IWAT SLD IWG IQAL ***
 END ACTIVITY
 PRINT-INFO
  <ILS > ******* Print-flags ****** PIVL PYR
  # - # ATMP SNOW IWAT SLD IWG IQAL *******
 END PRINT-INFO
 IWAT-PARM1
  <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
 END IWAT-PARM1
 END IWAT-PARM2
 IWAT-PARM3
  * * *
  # - # ***PETMAX PETMIN
 END IWAT-PARM3
 IWAT-STATE1
  <PLS > *** Initial conditions at start of simulation
  # - # *** RETS SURS
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                     <--Area--> <-Target-> MBLK *** <-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
```

```
*****Routing****
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
            Name Nexits Unit Systems Printer
                                                                      * * *
  RCHRES
   # - #<----> User T-series Engl Metr LKFG
                                                                      * * *
                                                                      * * *
                                       in out
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
   <PLS > ******** Active Sections **********************
   # - # HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG ***
 END ACTIVITY
 PRINT-INFO
   <PLS > ******** Print-flags ******** PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR *******
 END PRINT-INFO
 HYDR-PARM1
   RCHRES Flags for each HYDR Section
   # - # VC A1 A2 A3 ODFVFG for each *** ODGTFG for each FUNCT for each FG FG FG possible exit *** possible exit possible exit ***
 END HYDR-PARM1
 HYDR-PARM2
  # - # FTABNO LEN DELTH STCOR KS DB50
                                                                     * * *
  <----><----><---->
 END HYDR-PARM2
   RCHRES Initial conditions for each HYDR section
 END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
                                                           <Name> # # ***
<Name> # <Name> # tem strg<-factor->strg <Name> # #

      2 PREC
      ENGL
      0.857
      PERLND
      1 999 EXTNL
      PREC

      2 PREC
      ENGL
      0.857
      IMPLND
      1 999 EXTNL
      PREC

      1 EVAD
      ENGL
      0.76
      DEPLIND
      1 999 EXTNL
      PREC

MDM
MOW
       1 EVAP ENGL 0.76
1 EVAP ENGL 0.76
WDM
                                     PERLND 1 999 EXTNL PETINP
                                      IMPLND 1 999 EXTNL PETINP
WDM
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
<Name> # <Name> # #<-factor->strg <Name> # <Name> tem strg strg***
END EXT TARGETS
```

MASS-LINK

END MASS-LINK

END RUN

Mitigated UCI File

RUN

```
GLOBAL
 WWHM4 model simulation
                          END
                               2008 09 30
 START 1955 10 01
 RUN INTERP OUTPUT LEVEL
                        3 0
 RESUME 0 RUN 1
                                    UNIT SYSTEM 1
END GLOBAL
FILES
<File> <Un#>
             <---->***
<-ID->
WDM
         26
             20230803 CountryMeadowsPhase1PrelimSizing.wdm
MESSII
         25
             Mit20230803 CountryMeadowsPhase1PrelimSizing.MES
             Mit20230803 CountryMeadowsPhase1PrelimSizing.L61
         27
             Mit20230803 CountryMeadowsPhase1PrelimSizing.L62
         30
             POC20230803 CountryMeadowsPhase1PrelimSizing1.dat
END FILES
OPN SEQUENCE
   INGRP
                   INDELT 00:15
                7
    PERLND
               1
     IMPLND
              1
    RCHRES
    COPY
                1
     COPY
              501
    DISPLY
               1
   END INGRP
END OPN SEQUENCE
DISPLY
   # - #<-----Title---->***TRAN PIVL DIG1 FIL1 PYR DIG2 FIL2 YRND
   1 Gravel Trench Bed 1 MAX
 END DISPLY-INFO1
END DISPLY
COPY
 TIMESERIES
  # - # NPT NMN ***
 1 1
501 1
              1
 END TIMESERIES
END COPY
GENER
 OPCODE
  # # OPCD ***
 END OPCODE
 PARM
               K ***
  #
 END PARM
END GENER
PERLND
 GEN-INFO
   <PLS ><----Name---->NBLKS Unit-systems Printer ***
                             User t-series Engl Metr ***
                                    in out
                            1 1
       A/B, Lawn, Flat
                                             27
 END GEN-INFO
 *** Section PWATER***
 ACTIVITY
   <PLS > ******** Active Sections **********************
   # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ***
7 0 0 1 0 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
   # - # ATMP SNOW PWAT SED PST PWG PQAL MSTL PEST NITR PHOS TRAC ********
```

```
END PRINT-INFO
 PWAT-PARM1
   <PLS > PWATER variable monthly parameter value flags ***
   # - # CSNO RTOP UZFG VCS VUZ VNN VIFW VIRC VLE INFC HWT ***
7 0 0 0 0 0 0 0 0 0 0 0
 END PWAT-PARM1
            PWATER input info: Part 2 ***

FOREST LZSN INFILT LSUR SLSUR KVARY AGWRC

5 0.8 400 0.05 0.3 0.996
 PWAT-PARM2
   <PLS >
   # - # ***FOREST LZSN INFILT
7 0 5 0.8
 END PWAT-PARM2
 PWAT-PARM3

«PLS > PWATER input info: Part 3 ***
   # - # ***PETMAX PETMIN INFEXP
7 0 0 2
                                       INFILD DEEPFR
                                                         BASETP
                                                                 AGWETP
 END PWAT-PARM3
 PWAT-PARM4
            PWATER input info: Part 4
   <PLS >
            CEPSC UZSN NSUR
0.1 0.5 0.25
                                      INTFW IRC
                                                         LZETP ***
  7 0.1
                                                  0.7
 END PWAT-PARM4
 PWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
           ran from 1990 to end of 1992 (pat 1-11-95) RUN 21 ***
       # *** CEPS SURS UZS IFWS LZS AGWS 0 0 0 0 3 1
                                                                    GWVS
 END PWAT-STATE1
END PERLND
IMPLND
 GEN-INFO
   <PLS ><----- Name----> Unit-systems Printer ***
                           User t-series Engl Metr ***
                                 in out ***
                              1 1 1
  1 ROADS/FLAT
 END GEN-INFO
 *** Section IWATER***
 ACTIVITY
  # - # ATMP SNOW IWAT SLD IWG IQAL
1 0 0 1 0 0
 END ACTIVITY
 PRINT-INFO
  <ILS > ******* Print-flags ****** PIVL PYR
   # - # ATMP SNOW IWAT SLD IWG IQAL ********
1 0 0 4 0 0 0 1 9
 END PRINT-INFO
 IWAT-PARM1
   <PLS > IWATER variable monthly parameter value flags ***
   # - # CSNO RTOP VRS VNN RTLI ***
1 0 0 0 0 0
 END IWAT-PARM1
 IWAT-PARM2
             IWATER input info: Part 2
   <PLS >
   # - # *** LSUR SLSUR NSUR RETSC
1 400 0.01 0.1 0.1
 END IWAT-PARM2
 IWAT-PARM3
              IWATER input info: Part 3
   <PLS >
```

```
# - # ***PETMAX PETMIN
1 0 0
 END IWAT-PARM3
 IWAT-STATE1
   <PLS > *** Initial conditions at start of simulation
   # - # *** RETS SURS
      0
                    0
   1
 END IWAT-STATE1
END IMPLND
SCHEMATIC
                     <--Area--> <-Target-> MBLK ***
<-factor-> <Name> # Tbl# ***
<-Source->
<Name> #
Road A/B***
                           3.58 RCHRES 1
3.58 RCHRES 1
3.3 RCHRES 1
PERLND 7
                                              2
                                  RCHRES 1
RCHRES 1
                                                3
PERLND
IMPLND 1
*****Routing*****
                           3.58 COPY 1 12
3.3 COPY 1 15
3.58 COPY 1 13
1 COPY 501 17
PERLND 7
TMPT/ND
PERLND 7
                                  COPY 501 17
RCHRES 1
END SCHEMATIC
NETWORK
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Target vols> <-Grp> <-Member-> ***
END NETWORK
RCHRES
 GEN-INFO
  RCHRES Name Nexits Unit Systems Printer
                                                              * * *
   # - #<----><---> User T-series Engl Metr LKFG
                                                              * * *
                                                              * * *
                                  in out
  1 Gravel Trench Be-005 2 1 1 1 28 0 1
 END GEN-INFO
 *** Section RCHRES***
 ACTIVITY
   <PLS > ******* Active Sections ***********************
   \# - \# HYFG ADFG CNFG HTFG SDFG GQFG OXFG NUFG PKFG PHFG *** 1 0 0 0 0 0 0 0 0 0 0
 END ACTIVITY
 PRINT-INFO
   <PLS > ******** Print-flags ********* PIVL PYR
   # - # HYDR ADCA CONS HEAT SED GQL OXRX NUTR PLNK PHCB PIVL PYR 1 4 0 0 0 0 0 0 0 0 0 0 1 9
 END PRINT-INFO
 HYDR-PARM1
   RCHRES Flags for each HYDR Section
   1
 END HYDR-PARM1
 HYDR-PARM2
  # - # FTABNO
                    LEN
                                              KS
                                                    DB50
                           DELTH
                                   STCOR
                                                              * * *
  <----><----><---->
```

```
0.0
                                                  0.0 0.5
                                                                           0.0
                             0.01
  END HYDR-PARM2
  HYDR-INIT
    RCHRES Initial conditions for each HYDR section
    <---><---><---> *** <---><--->
  <---->
    1
                           4.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
                   0
  END HYDR-INIT
END RCHRES
SPEC-ACTIONS
END SPEC-ACTIONS
FTABLES
  FTABLE
   92 5
     Depth
                Area Volume Outflow1 Outflow2 Velocity Travel Time***

    (ft)
    (acres)
    (acre-ft)
    (cfs)
    (cfs)

    0.000000
    0.090954
    0.000000
    0.000000
    0.000000

    0.044444
    0.090954
    0.001334
    0.000000
    1.834232

    0.088889
    0.090954
    0.002668
    0.000000
    1.834232

                                               (cfs)
                                                          (ft/sec)
                                                                    (Minutes)***
  0.177778 0.090954 0.005336 0.000000 1.834232
  0.222222 0.090954 0.006670 0.000000 1.834232
  0.266667 0.090954 0.008004 0.000000 1.834232
  0.311111 \quad 0.090954 \quad 0.009338 \quad 0.000000 \quad 1.834232
  0.000000 1.834232
  0.488889
             0.090954
                        0.014674
                        0.016008 0.000000 1.834232
  0.533333 0.090954
                       0.017342 0.000000 1.834232
  0.577778 0.090954
  0.622222 0.090954
                       0.018676 0.000000 1.834232
  0.666667 0.090954 0.020010 0.000000 1.834232
  0.711111 \quad 0.090954 \quad 0.021344 \quad 0.000000 \quad 1.834232
  0.755556 \quad 0.090954 \quad 0.022678 \quad 0.000000 \quad 1.834232

    0.090954
    0.024012
    0.000000
    1.834232

    0.090954
    0.025346
    0.000000
    1.834232

    0.090954
    0.026680
    0.000000
    1.834232

  0.800000
  0.844444
  0.888889
  0.933333  0.090954  0.028014  0.000000  1.834232
  0.977778 0.090954 0.029348 0.000000 1.834232
  1.022222 0.090954 0.030682 0.000000 1.834232
  1.066667 0.090954 0.032016 0.000000 1.834232
  1.111111 0.090954 0.033350 0.000000 1.834232
  1.155556 \quad 0.090954 \quad 0.034684 \quad 0.000000 \quad 1.834232

      1.200000
      0.090954
      0.036018
      0.000000
      1.834232

      1.244444
      0.090954
      0.037352
      0.000000
      1.834232

      1.288889
      0.090954
      0.038686
      0.000000
      1.834232

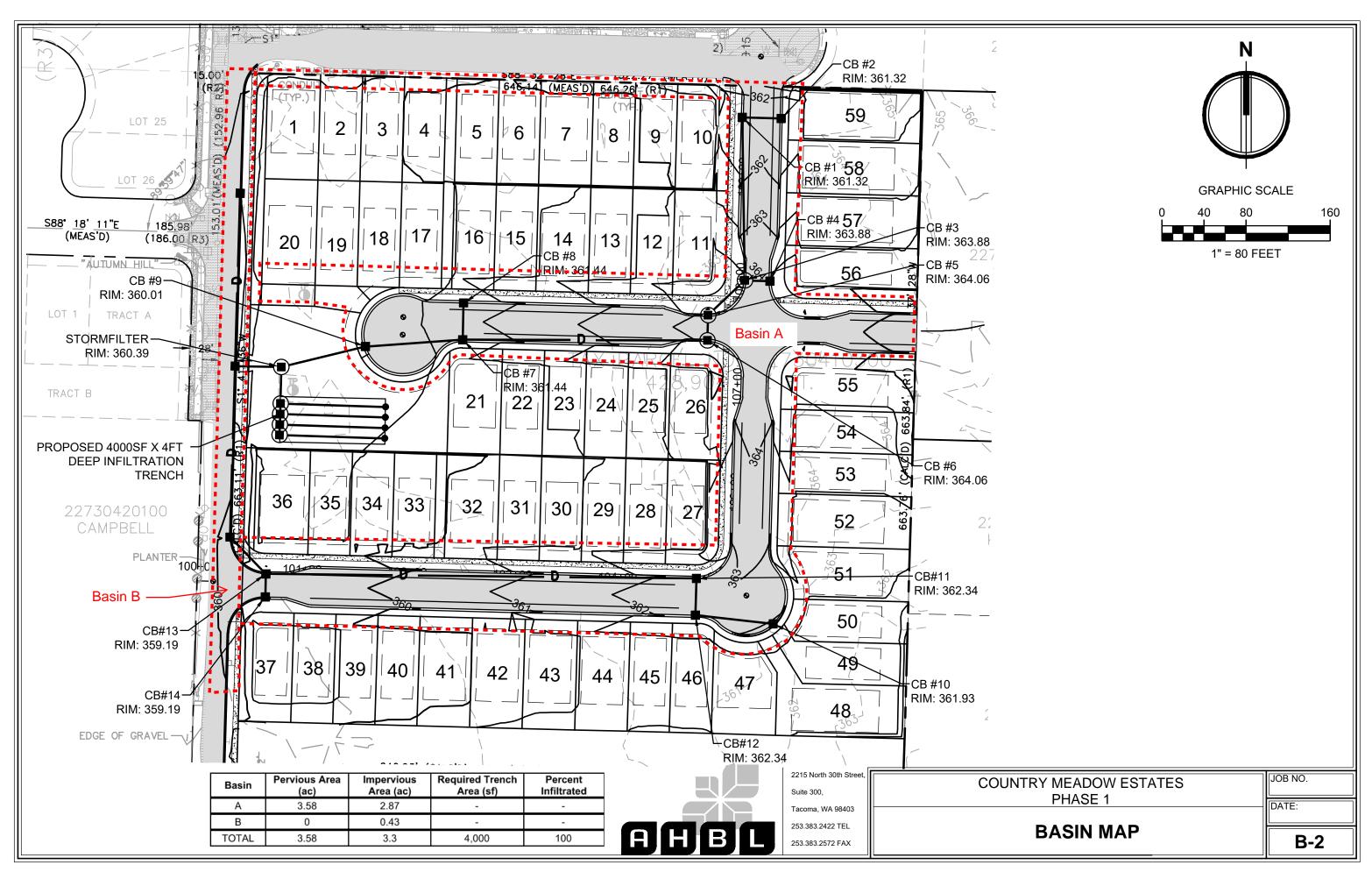
                        0.040020 0.000000 1.834232
  1.333333 0.090954
  1.377778 0.090954
                       0.041354 0.000000 1.834232
  1.422222 0.090954
                        0.042688 0.000000 1.834232
  1.466667 0.090954 0.044022 0.000000 1.834232
  1.511111 0.090954 0.045356 0.000000 1.834232
  1.555556 0.090954 0.046690 0.000000 1.834232
  1.600000
             0.090954 0.048024 0.000000 1.834232
  1.644444
             0.090954
                        0.049358 0.000000 1.834232
             0.090954 0.050692 0.000000 1.834232
0.090954 0.052025 0.000000 1.834232
  1.688889
  1.733333
  1.777778 0.090954 0.053359 0.000000 1.834232
  1.822222
            0.090954 0.054693 0.000000 1.834232
  1.866667 0.090954 0.056027 0.000000 1.834232
  1.911111 0.090954 0.057361 0.000000 1.834232
  1.955556 0.090954 0.058695 0.000000 1.834232
                       0.060029 0.000000 1.834232
  2.000000 0.090954
                                   0.000000 1.834232
             0.090954
                        0.061363
  2.044444
  2.088889
             0.090954
                        0.062697
                                    0.000000
                                               1.834232
                                   0.000000
  2.133333
             0.090954
                        0.064031
                                               1.834232
                                   0.000000
  2.177778
             0.090954
                        0.065365
                                               1.834232
             0.090954
                        0.066699
                                   0.000000
  2.22222
                                               1.834232
             0.090954
                        0.068033 0.000000 1.834232
  2.266667
```

```
2.311111
            0.090954 0.069367
                                0.000000 1.834232
                                0.000000 1.834232
  2.355556
            0.090954
                     0.070701
            0.090954
  2.400000
                     0.072035
                                0.000000 1.834232
  2.44444
            0.090954 0.073369
                                0.000000 1.834232
            0.090954 0.074703
                                0.000000 1.834232
  2.488889
  2.533333
            0.090954
                     0.076037
                                0.000000 1.834232
  2.577778
            0.090954
                     0.077371
                                0.000000 1.834232
                                0.000000 1.834232
            0.090954
                     0.078705
  2.622222
  2.666667
            0.090954
                      0.080039
                                0.000000
                                          1.834232
  2.711111
            0.090954
                      0.081373
                                0.000000
                                           1.834232
  2.755556
            0.090954
                      0.082707
                                0.000000
                                          1.834232
            0.090954
  2.800000
                      0.084041
                                0.000000
                                          1.834232
  2.844444
            0.090954
                      0.085375
                                0.000000
                                          1.834232
  2.888889
            0.090954
                      0.086709
                                0.000000 1.834232
  2.933333
            0.090954
                      0.088043
                                0.000000
                                          1.834232
  2.977778
            0.090954
                      0.089377
                                0.000000
                                          1.834232
            0.090954
                                          1.834232
  3.022222
                      0.090711
                                0.000000
  3.066667
            0.090954
                      0.092045
                                0.000000
                                          1.834232
            0.090954
                      0.093379
                                0.000000
                                           1.834232
  3.111111
  3.155556
            0.090954
                      0.094713
                                0.000000
                                           1.834232
            0.090954
                      0.096047
  3,200000
                                0.000000
                                          1.834232
  3.244444
            0.090954
                     0.097381
                                0.000000 1.834232
  3.288889
           0.090954
                     0.098715
                                0.000000 1.834232
            0.090954 0.100049
                                0.000000 1.834232
  3.333333
           0.090954 0.101383
                                0.000000 1.834232
  3.377778
           0.090954 0.102717
                                0.000000 1.834232
  3.422222
                                0.000000
  3.466667
            0.090954
                     0.104051
                                          1.834232
            0.090954
                                0.000000
  3.511111
                      0.105385
                                          1.834232
  3.555556
            0.090954
                      0.106719
                                0.000000
                                          1.834232
  3.600000
            0.090954
                      0.108053
                                0.000000
                                          1.834232
  3.644444
            0.090954
                      0.109387
                                0.000000
                                          1.834232
            0.090954
                      0.110721
                                0.000000 1.834232
  3.688889
  3.733333
            0.090954
                      0.112055
                                0.000000
                                          1.834232
  3.777778
            0.090954
                      0.113389
                                0.000000
                                          1.834232
                                          1.834232
            0.090954
                      0.114723
                                0.000000
  3.822222
                                0.000000
                                          1.834232
  3.866667
            0.090954
                      0.116057
  3.911111
            0.090954
                      0.117391
                                0.000000
                                           1.834232
            0.090954
                      0.118725
                                0.000000
  3.955556
                                           1.834232
  4.000000
            0.090954
                      0.120059
                                0.000000
                                           1.834232
  4.044444
            0.090954
                      0.124101
                                0.082732
                                          1.834232
  END FTABLE 1
END FTABLES
EXT SOURCES
<-Volume-> <Member> SsysSgap<--Mult-->Tran <-Target vols> <-Grp> <-Member->
         # <Name> # tem strg<-factor->strg <Name>
                                                     # #
                                                                  <Name> # #
<Name>
                                                     1 999 EXTNL
WDM
         2 PREC
                    ENGL
                            0.857
                                            PERLND
                                                                  PREC
WDM
         2 PREC
                    ENGL
                            0.857
                                            IMPLND
                                                     1 999 EXTNL
                                                                  PREC
                                                     1 999 EXTNL
                                                                  PETINP
                            0.76
WDM
         1 EVAP
                    ENGL
                                            PERLND
                                                     1 999 EXTNL
MDM
         1 EVAP
                    ENGT.
                            0.76
                                            IMPLND
                                                                  PETINP
END EXT SOURCES
EXT TARGETS
<-Volume-> <-Grp> <-Member-><--Mult-->Tran <-Volume-> <Member> Tsys Tgap Amd ***
<Name>
                  <Name> # #<-factor->strg <Name> # <Name>
                                                                tem strq strq***
                         1 1
                                    1
                                                  1000 FLOW
RCHRES
         1 HYDR
                  RO
                                            MDM
                                                                ENGL
                                                                          REPL
                                                  1001 FLOW
RCHRES
         1 HYDR
                  0
                         1 1
                                    1
                                            WDM
                                                                ENGL
                                                                          REPL
                                                  1002 FLOW
                  0
                         2 1
                                    1
                                            WDM
                                                                ENGL
RCHRES
         1 HYDR
                                                                          REPL
                         1 1
                                    1
                                            WDM
                                                  1003 STAG
RCHRES
         1 HYDR
                  STAGE
                                                                ENGL
                                                                          REPL
         1 OUTPUT MEAN
                                 48.4
COPY
                         1 1
                                            WDM
                                                   701 FLOW
                                                                ENGL
                                                                          REPL
       501 OUTPUT MEAN
                         1 1
                                 48.4
                                            WDM
                                                   801 FLOW
                                                                ENGL
                                                                          REPL
END EXT TARGETS
MASS-LINK
<Volume>
           <-Grp> <-Member-><--Mult-->
                                            <Target>
                                                           <-Grp> <-Member->***
<Name>
                  <Name> # #<-factor->
                                            <Name>
                                                                  <Name> # #***
                   2
  MASS-LINK
                             0.083333
PERLND
         PWATER SURO
                                            RCHRES
                                                           INFLOW IVOL
  END MASS-LINK
                   2
```

MASS-LINK PERLND PWATER END MASS-LINK	3 IFWO 3	0.083333	RCHRES	INFLOW	IVOL
MASS-LINK IMPLND IWATER END MASS-LINK	5 SURO 5	0.083333	RCHRES	INFLOW	IVOL
MASS-LINK PERLND PWATER END MASS-LINK	12 SURO 12	0.083333	COPY	INPUT	MEAN
MASS-LINK PERLND PWATER END MASS-LINK	13 IFWO 13	0.083333	СОРУ	INPUT	MEAN
MASS-LINK IMPLND IWATER END MASS-LINK	15 SURO 15	0.083333	СОРУ	INPUT	MEAN
MASS-LINK RCHRES OFLOW END MASS-LINK	17 OVOL 1 17		СОРУ	INPUT	MEAN

END MASS-LINK

END RUN


Disclaimer

Legal Notice

This program and accompanying documentation are provided 'as-is' without warranty of any kind. The entire risk regarding the performance and results of this program is assumed by End User. Clear Creek Solutions Inc. and the governmental licensee or sublicensees disclaim all warranties, either expressed or implied, including but not limited to implied warranties of program and accompanying documentation. In no event shall Clear Creek Solutions Inc. be liable for any damages whatsoever (including without limitation to damages for loss of business profits, loss of business information, business interruption, and the like) arising out of the use of, or inability to use this program even if Clear Creek Solutions Inc. or their authorized representatives have been advised of the possibility of such damages. Software Copyright © by : Clear Creek Solutions, Inc. 2005-2023; All Rights Reserved.

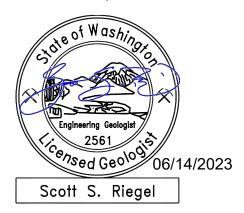
Clear Creek Solutions, Inc. 6200 Capitol Blvd. Ste F Olympia, WA. 98501 Toll Free 1(866)943-0304 Local (360)943-0304

www.clearcreeksolutions.com

Appendix C

Geotechnical Report

Earth Solutions NW, LLC June 14, 2023



PREPARED FOR

COPPER RIDGE, LLC

June 14, 2023

Scott S. Riegel, L.G., L.E.G. Associate Principal Geologist

Kyle R. Campbell, P.E. Senior Principal Engineer

GEOTECHNICAL ENGINEERING STUDY PROPOSED VANCIL ROAD SUBDIVISION 10800 VANCIL ROAD SOUTHEAST THURSTON COUNTY (YELM), WASHINGTON

ES-9150

Earth Solutions NW, LLC 15365 Northeast 90th Street, Suite 100 Redmond, Washington 98052 Phone: 425-449-4704 | Fax: 425-449-4711 www.earthsolutionsnw.com

Important Information about This

Geotechnical-Engineering Report

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

The Geoprofessional Business Association (GBA) has prepared this advisory to help you - assumedly a client representative - interpret and apply this geotechnical-engineering report as effectively as possible. In that way, you can benefit from a lowered exposure to problems associated with subsurface conditions at project sites and development of them that, for decades, have been a principal cause of construction delays, cost overruns, claims, and disputes. If you have questions or want more information about any of the issues discussed herein, contact your GBA-member geotechnical engineer. Active engagement in GBA exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project.

Understand the Geotechnical-Engineering Services Provided for this Report

Geotechnical-engineering services typically include the planning, collection, interpretation, and analysis of exploratory data from widely spaced borings and/or test pits. Field data are combined with results from laboratory tests of soil and rock samples obtained from field exploration (if applicable), observations made during site reconnaissance, and historical information to form one or more models of the expected subsurface conditions beneath the site. Local geology and alterations of the site surface and subsurface by previous and proposed construction are also important considerations. Geotechnical engineers apply their engineering training, experience, and judgment to adapt the requirements of the prospective project to the subsurface model(s). Estimates are made of the subsurface conditions that will likely be exposed during construction as well as the expected performance of foundations and other structures being planned and/or affected by construction activities.

The culmination of these geotechnical-engineering services is typically a geotechnical-engineering report providing the data obtained, a discussion of the subsurface model(s), the engineering and geologic engineering assessments and analyses made, and the recommendations developed to satisfy the given requirements of the project. These reports may be titled investigations, explorations, studies, assessments, or evaluations. Regardless of the title used, the geotechnical-engineering report is an engineering interpretation of the subsurface conditions within the context of the project and does not represent a close examination, systematic inquiry, or thorough investigation of all site and subsurface conditions.

Geotechnical-Engineering Services are Performed for Specific Purposes, Persons, and Projects, and At Specific Times

Geotechnical engineers structure their services to meet the specific needs, goals, and risk management preferences of their clients. A geotechnical-engineering study conducted for a given civil engineer will <u>not</u> likely meet the needs of a civil-works constructor or even a different civil engineer. Because each geotechnical-engineering study is unique, each geotechnical-engineering report is unique, prepared *solely* for the client.

Likewise, geotechnical-engineering services are performed for a specific project and purpose. For example, it is unlikely that a geotechnical-engineering study for a refrigerated warehouse will be the same as one prepared for a parking garage; and a few borings drilled during a preliminary study to evaluate site feasibility will not be adequate to develop geotechnical design recommendations for the project.

Do <u>not</u> rely on this report if your geotechnical engineer prepared it:

- for a different client;
- for a different project or purpose;
- for a different site (that may or may not include all or a portion of the original site); or
- before important events occurred at the site or adjacent to it;
 e.g., man-made events like construction or environmental remediation, or natural events like floods, droughts, earthquakes, or groundwater fluctuations.

Note, too, the reliability of a geotechnical-engineering report can be affected by the passage of time, because of factors like changed subsurface conditions; new or modified codes, standards, or regulations; or new techniques or tools. *If you are the least bit uncertain* about the continued reliability of this report, contact your geotechnical engineer before applying the recommendations in it. A minor amount of additional testing or analysis after the passage of time – if any is required at all – could prevent major problems.

Read this Report in Full

Costly problems have occurred because those relying on a geotechnicalengineering report did not read the report in its entirety. Do <u>not</u> rely on an executive summary. Do <u>not</u> read selective elements only. *Read and* refer to the report in full.

You Need to Inform Your Geotechnical Engineer About Change

Your geotechnical engineer considered unique, project-specific factors when developing the scope of study behind this report and developing the confirmation-dependent recommendations the report conveys. Typical changes that could erode the reliability of this report include those that affect:

- · the site's size or shape;
- the elevation, configuration, location, orientation, function or weight of the proposed structure and the desired performance criteria;
- · the composition of the design team; or
- · project ownership.

As a general rule, *always* inform your geotechnical engineer of project or site changes – even minor ones – and request an assessment of their impact. *The geotechnical engineer who prepared this report cannot accept*

responsibility or liability for problems that arise because the geotechnical engineer was not informed about developments the engineer otherwise would have considered.

Most of the "Findings" Related in This Report Are Professional Opinions

Before construction begins, geotechnical engineers explore a site's subsurface using various sampling and testing procedures. *Geotechnical engineers can observe actual subsurface conditions only at those specific locations where sampling and testing is performed.* The data derived from that sampling and testing were reviewed by your geotechnical engineer, who then applied professional judgement to form opinions about subsurface conditions throughout the site. Actual sitewide-subsurface conditions may differ – maybe significantly – from those indicated in this report. Confront that risk by retaining your geotechnical engineer to serve on the design team through project completion to obtain informed guidance quickly, whenever needed.

This Report's Recommendations Are Confirmation-Dependent

The recommendations included in this report – including any options or alternatives – are confirmation-dependent. In other words, they are <u>not</u> final, because the geotechnical engineer who developed them relied heavily on judgement and opinion to do so. Your geotechnical engineer can finalize the recommendations *only after observing actual subsurface conditions* exposed during construction. If through observation your geotechnical engineer confirms that the conditions assumed to exist actually do exist, the recommendations can be relied upon, assuming no other changes have occurred. *The geotechnical engineer who prepared this report cannot assume responsibility or liability for confirmation-dependent recommendations if you fail to retain that engineer to perform construction observation.*

This Report Could Be Misinterpreted

Other design professionals' misinterpretation of geotechnicalengineering reports has resulted in costly problems. Confront that risk by having your geotechnical engineer serve as a continuing member of the design team, to:

- · confer with other design-team members;
- help develop specifications;
- review pertinent elements of other design professionals' plans and specifications; and
- be available whenever geotechnical-engineering guidance is needed.

You should also confront the risk of constructors misinterpreting this report. Do so by retaining your geotechnical engineer to participate in prebid and preconstruction conferences and to perform construction-phase observations.

Give Constructors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can shift unanticipated-subsurface-conditions liability to constructors by limiting the information they provide for bid preparation. To help prevent the costly, contentious problems this practice has caused, include the complete geotechnical-engineering report, along with any attachments or appendices, with your contract documents, *but be certain to note*

conspicuously that you've included the material for information purposes only. To avoid misunderstanding, you may also want to note that "informational purposes" means constructors have no right to rely on the interpretations, opinions, conclusions, or recommendations in the report. Be certain that constructors know they may learn about specific project requirements, including options selected from the report, only from the design drawings and specifications. Remind constructors that they may perform their own studies if they want to, and be sure to allow enough time to permit them to do so. Only then might you be in a position to give constructors the information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions. Conducting prebid and preconstruction conferences can also be valuable in this respect.

Read Responsibility Provisions Closely

Some client representatives, design professionals, and constructors do not realize that geotechnical engineering is far less exact than other engineering disciplines. This happens in part because soil and rock on project sites are typically heterogeneous and not manufactured materials with well-defined engineering properties like steel and concrete. That lack of understanding has nurtured unrealistic expectations that have resulted in disappointments, delays, cost overruns, claims, and disputes. To confront that risk, geotechnical engineers commonly include explanatory provisions in their reports. Sometimes labeled "limitations," many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. *Read these provisions closely*. Ask questions. Your geotechnical engineer should respond fully and frankly.

Geoenvironmental Concerns Are Not Covered

The personnel, equipment, and techniques used to perform an environmental study – e.g., a "phase-one" or "phase-two" environmental site assessment – differ significantly from those used to perform a geotechnical-engineering study. For that reason, a geotechnical-engineering report does not usually provide environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. *Unanticipated subsurface environmental problems have led to project failures*. If you have not obtained your own environmental information about the project site, ask your geotechnical consultant for a recommendation on how to find environmental risk-management guidance.

Obtain Professional Assistance to Deal with Moisture Infiltration and Mold

While your geotechnical engineer may have addressed groundwater, water infiltration, or similar issues in this report, the engineer's services were not designed, conducted, or intended to prevent migration of moisture – including water vapor – from the soil through building slabs and walls and into the building interior, where it can cause mold growth and material-performance deficiencies. Accordingly, proper implementation of the geotechnical engineer's recommendations will not of itself be sufficient to prevent moisture infiltration. Confront the risk of moisture infiltration by including building-envelope or mold specialists on the design team. Geotechnical engineers are not building-envelope or mold specialists.

Telephone: 301/565-2733

e-mail: info@geoprofessional.org www.geoprofessional.org

Copyright 2019 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA's specific written permission. Excerpting, quoting, or otherwise extracting wording from this document is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document or its wording as a complement to or as an element of a report of any kind. Any other firm, individual, or other entity that so uses this document without being a GBA member could be committing negligent or intentional (fraudulent) misrepresentation.

June 14, 2023 ES-9150

Earth Solutions NW LLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

Copper Ridge, LLC P.O. Box 73790 Puyallup, Washington 98373

Attention: Evan Mann

Dear Evan:

Earth Solutions NW, LLC (ESNW), is pleased to present this report to support the proposed project. Based on the results of our investigation, construction of the proposed residential development is feasible from a geotechnical standpoint.

Based on conditions observed during our fieldwork, the site is underlain primarily by native soils consisting of glacial outwash sand/gravel deposits. The proposed residential structures can be supported on conventional spread and continuous foundations bearing on undisturbed competent native soil, recompacted native soil, or new structural fill placed directly on a competent subgrade surface. We anticipate competent native soil suitable for support of foundations will generally be encountered beginning at depths of about two to four feet below existing grades across the site.

Based on our investigation, infiltration is considered feasible from a geotechnical standpoint due to the pervasive presence of relatively clean outwash sand/gravel soils.

This report provides geotechnical analyses and recommendations for the proposed residential development. We appreciate the opportunity to be of service to you on this project. If you have any questions regarding the content of this study, please call.

Sincerely,

EARTH SOLUTIONS NW, LLC

Scott S. Riegel, L.G., L.E.G. Associate Principal Geologist

Table of Contents

ES-9150

	<u>PAGE</u>
INTRODUCTION	1
General	1
Project Description	2
1 Toject Bescription	_
SITE CONDITIONS	2
Surface	
Subsurface	2 2 3 3 3
Topsoil and Fill	3
Native Soil	3
Geologic Setting	3
Groundwater	3
GEOLOGIC CRITICAL AREAS EVALUATION	4
DISCUSSION AND RECOMMENDATIONS	4
General	4
Site Preparation and Earthwork	4
Temporary Erosion Control	5
Stripping	5
In-situ and Imported Soil	6
Structural Fill	6
Excavations and Slopes	7
Subgrade Preparation	7
Foundations	7
Retaining Walls	8
Seismic Design	9
Slab-on-Grade Floors	10
<u>Drainage</u>	10
Preliminary Infiltration Evaluation	10
Utility Support and Trench Backfill	11
Preliminary Pavement Sections	12
LIMITATIONS	13
LIMITATIONS Additional Services	13

Table of Contents

Cont'd

ES-9150

GRAPHICS

Plate 1 Vicinity Map

Plate 2 Test Pit Location Plan

Plate 3 Retaining Wall Drainage Detail

Plate 4 Footing Drain Detail

APPENDICES

Appendix A Subsurface Exploration

Test Pit Logs

Appendix B Laboratory Test Results

GEOTECHNICAL ENGINEERING STUDY VANCIL ROAD SUBDIVISION 10800 VANCIL ROAD SOUTHEAST THURSTON COUNTY (YELM), WASHINGTON

ES-9150

INTRODUCTION

General

This geotechnical engineering study (study) was prepared for the proposed residential development to be constructed in Yelm, Washington. To complete our scope of services, we performed the following:

- Subsurface exploration to characterize the soil and groundwater conditions.
- Laboratory testing of representative soil samples collected on site.
- Engineering analyses.
- Preparation of this report.

The following documents and resources were reviewed as part of our report preparation:

- Vancil Road Layout, provided by the client, dated February 27, 2023.
- Morris Road Plat, prepared by AHBL, dated June 15, 2022.
- Surficial hydrogeologic units of the Puget Sound aquifer system, Washington and British Columbia, for the Centralia quadrangle (Plate 17 of 18) M.A. Jones 1998.
- Web Soil Survey (WSS) online resource, maintained by the Natural Resources Conservation Service (NRCS) under the United States Department of Agriculture (USDA).
- Pierce County Stormwater Management and Site Development Manual, effective July 1, 2021.
- Yelm Municipal Code Chapter 18.21.

Project Description

The overall project area is located off the east side of Vancil Road Southeast in Yelm, Washington.

Site grading plans were not available at the time of this proposal; however, we understand the Vancil Road project will consist of construction of 60 single-family homesites and the Morris Road site will be developed with 30 lots and associated infrastructure improvements. Each site will include a stormwater management facility, and will require seasonal groundwater monitoring. We presume infiltration will be pursued to the extent feasible.

At the time of report submission, specific building loads were not available for review; however, we anticipate the proposed residential structures will consist of relatively lightly loaded wood framing supported on conventional foundations. Based on our experience with similar developments, we estimate wall loads of about 1 to 3 kips per linear foot and slab-on-grade loading of 150 pounds per square foot (psf) will be incorporated into the final design. Based on the low topographic relief on this site, we anticipate grading will be limited to cuts and fills of about five feet or less for lots. Deeper cuts will occur for utilities and the stormwater tracts.

If the above design assumptions are incorrect or change, ESNW should be contacted to review the recommendations provided in this report. ESNW should review final designs to confirm that appropriate geotechnical recommendations have been incorporated into the plans.

SITE CONDITIONS

<u>Surface</u>

The two properties that comprise the Vancil Road and Morris Road sites consist of Thurston County Parcel Nos. 22730410300 & 22730410000. The sites are vacant and the majority of the Vancil Road site area is surfaced with field grass used as fenced pasture while the Morris Road site is largely forested. Topography is gently undulating. The Vancil Road property is bordered to the north and west by residential development, to the east by the Morris Road property and to the south by open space. The Morris Road property is bordered to the north and south by residential property, to the east by Morris Road Southeast and to the west by the Vancil Road property.

Subsurface

A representative of ESNW observed, logged, and sampled 18 test pits at accessible locations within the property boundaries on April 24/25, 2023 using a machine and operator provided by the client. The explorations were completed to assess and classify the site soils and to characterize the groundwater conditions within areas proposed for new development. The maximum exploration depth was approximately 16 feet below the existing ground surface (bgs).

The approximate locations of the test pits are depicted on Plate 2 (Test Pit Location Plan). Please refer to the test pit logs provided in Appendix A for a more detailed description of subsurface conditions. Representative soil samples collected at our exploration locations were analyzed in general accordance with Unified Soil Classification System (USCS) and USDA methods and procedures.

Topsoil and Fill

Topsoil was generally encountered within the upper 12 to 18 inches of existing grades at the test pit locations, except several explorations that encountered up to 24 inches. It is possible that deeper or shallower pockets of topsoil will be encountered locally across the site. The topsoil was characterized by its dark brown color, the presence of fine organic material, and small root intrusions.

Fill was not encountered during the subsurface exploration; however, fill is likely present to varying degrees around existing structures.

Native Soil

Underlying the topsoil, native soils consisting primarily of medium dense poorly and well graded gravel with sand (USCS: GP and GW) soils were encountered. At an isolated location TP-6 at 16 feet), a well graded sand with silt (USCS: SW-SM) layer was encountered. Fines contents within the native soil deposits were less than 5 percent, except the isolated layer of sand with silt which had a fines content of about 7.4 percent at TP-6. The native soils were primarily observed to be in a damp to moist condition and caving was common within the relatively clean sandy gravel deposits.

Geologic Setting

Geologic mapping of the area identifies recessional outwash gravel deposits (Qvrg) as the primary geologic unit underlying the site. The online WSS resource identifies Spanaway series soils (Map Units 110 and 112) roughly evenly distributed across the site. The referenced soil survey characterizes Spanaway gravelly sandy loam with slow surface water runoff and little to no hazard of water erosion and are assigned to hydrologic soil group A.

Based on the soil conditions encountered during our fieldwork, the native soils are consistent with the geologic and soils mapping resources outlined in this section of outwash sand/gravel soils.

Groundwater

Groundwater was not observed, during the April 2023 subsurface explorations. Groundwater flow rates and elevations may fluctuate depending on many factors, including precipitation duration and intensity, the time of year, and soil conditions. In general, groundwater flow rates are higher during the winter, spring, and early summer months. In any case, groundwater conditions should be expected within deeper site excavations, particularly during the wet season. Depending on the timing, depth, and extent of such excavations, temporary dewatering may be necessary.

GEOLOGIC CRITICAL AREAS EVALUATION

The subject property was evaluated for the presence of geologic critical areas in general accordance with Yelm Municipal Code Chapter 18.21. Based on our review no geologic critical areas are present on or immediately adjacent to the subject site.

Based on review of the Thurston County Wellhead Protection Areas map, the site is located within a 10-year Time-of-Travel area.

DISCUSSION AND RECOMMENDATIONS

General

Based on the results of our investigation, construction of the proposed residential development is feasible from a geotechnical standpoint. The primary geotechnical considerations associated with the proposed project include earthwork, temporary excavations, subgrade preparation, foundation support, and drainage.

Based on local geologic mapping and conditions observed during our fieldwork, the site is underlain primarily by native soils consisting of medium dense outwash sandy gravel deposits. The proposed residential structures can be supported on conventional spread and continuous foundations bearing on undisturbed competent native soil, recompacted native soil, or new structural fill placed directly on a competent subgrade. We anticipate competent native soil suitable for support of foundations will generally be encountered beginning at depths of about two to four feet below existing grades across the site.

Based on our investigation, infiltration is considered feasible from a geotechnical standpoint due to the presence of Spanaway gravel soils across the site.

This study has been prepared for the exclusive use of Copper Ridge, LLC and their representatives. No warranty, expressed or implied, is made. This study has been prepared in a manner consistent with the level of care and skill ordinarily exercised by other members of the profession currently practicing under similar conditions in this area.

Site Preparation and Earthwork

Site preparation activities should consist of installing temporary erosion control measures, establishing grading limits, and performing site stripping. Subsequent earthwork activities will likely include site grading, utility installations, and associated site improvements.

Temporary Erosion Control

The following temporary erosion and sediment control Best Management Practices (BMPs) are recommended:

- Temporary construction entrances and drive lanes, consisting of at least six inches of quarry spalls, should be considered to both minimize off-site soil tracking and provide stable surfaces at site entrances. Placing geotextile fabric underneath the quarry spalls will provide greater stability if needed.
- Silt fencing should be placed around the appropriate portions of the site perimeter to prevent offsite migration of sediment.
- When not in use, soil stockpiles should be covered or otherwise protected (as necessary) to reduce the potential for soil erosion, especially during periods of wet weather.
- As necessary, temporary measures for controlling surface water runoff, such as interceptor trenches, sumps, or interceptor swales, should be installed prior to beginning earthwork activities. For this site, infiltration may also be considered for control of surface water runoff.
- Dry soils disturbed during construction should be wetted to minimize dust and airborne soil erosion.

Additional Best Management Practices, as specified by the project civil engineer and indicated on the plans, should be incorporated into construction activities. Temporary erosion control measures may be modified during construction as site conditions require, as approved by the site erosion control lead.

Stripping

Topsoil was encountered generally within the upper 12 to 18 inches with isolated areas up to 24 inches of existing grades at the test pit locations. ESNW should be retained to observe site stripping activities at the time of construction so that the degree of required stripping may be assessed. The exposed subgrade may still possess root elements, other organic material, or be present in a loose condition. As such, ESNW should evaluate the exposed soil subgrade to determine if further stripping or in-situ compaction efforts prior to fill operations or finish grading is necessary. Over-stripping should be avoided, as it is unnecessary and may result in increased project development costs. Topsoil and organic-rich soil are neither suitable for foundation support nor for use as structural fill. Topsoil and organic-rich soil may be used in non-structural areas if desired.

In-situ and Imported Soil

The in-situ soils encountered at the subject site have a low to moderate sensitivity to moisture and were generally in a damp to moist condition at the time of exploration. Soils anticipated to be exposed on site may degrade if exposed to wet weather and construction traffic. Compaction of the soils to the levels necessary for use as structural fill may be difficult to impossible during wet weather conditions. Soils encountered during site excavations that are excessively over the optimum moisture content will likely require aeration or treatment prior to placement and compaction. Conversely, soils that are substantially below the optimum moisture content will require moisture conditioning through the addition of water prior to use as structural fill. An ESNW representative should determine the suitability of in-situ soils for use as structural fill at the time of construction.

Imported soil intended for use as structural fill should be evaluated by ESNW during construction. The imported soil must be workable to the optimum moisture content, as determined by the Modified Proctor Method (ASTM D1557), at the time of placement and compaction. During wet weather conditions, imported soil intended for use as structural fill should consist of a well-graded, granular soil with a fines content of 5 percent or less (where the fines content is defined as the percent passing the Number 200 sieve, based on the minus three-quarter-inch fraction).

Structural Fill

Structural fill is defined as compacted soil placed in foundation, slab-on-grade, roadway, permanent slope, retaining wall, and utility trench backfill areas. Structural fill placed and compacted during site grading activities should meet the following specifications and guidelines:

Structural fill material	Granular soil*
Moisture content	At or slightly above optimum [†]
Relative compaction (minimum)	95 percent (Modified Proctor) [‡]
Loose lift thickness (maximum)	12 inches

^{*} Existing gravel soils will likely require moisture conditioning (addition of water) prior to placement and compaction.
† Soil shall not be placed dry of optimum and should be evaluated by ESNW during construction.

With respect to underground utility installations and backfill, local jurisdictions may dictate the soil type(s) and compaction requirements. Unsuitable material or debris must be removed from structural areas if encountered.

[‡] Minimum relative compaction of 90% may be feasible for mass grading activities and should be evaluated by ESNW during construction.

Excavations and Slopes

The following Federal Occupation Safety and Health Administration and Washington Industrial Safety and Health Act soil classifications and maximum allowable temporary slope inclinations may be used:

Areas exposing groundwater seepage
 1.5H:1V (Type C)

Loose soil and fill
 1.5H:1V (Type C)

Medium dense to dense soil
 1H:1V (Type B)

Groundwater seepage should be anticipated during excavation activities, especially if excavations take place during the wet season. An ESNW representative should observe temporary excavations to evaluate the presence of groundwater seepage. If seepage is not observed, steeper temporary slope inclinations may be feasible pending evaluation by the geotechnical engineer.

Subgrade Preparation

Foundations should be constructed on competent native soil or structural fill placed directly on competent native soil. Loose or unsuitable soil conditions encountered below areas of footing and slab elements should be remedied as recommended in this report. In general, foundation subgrades on native cut surfaces should be compacted in-situ to a minimum depth of one foot below the design subgrade elevation. Uniform compaction of the foundation and slab subgrade areas will establish a relatively consistent subgrade condition below the foundation and slab elements. ESNW should observe the foundation and slab subgrade prior to placing formwork. Supplementary recommendations for subgrade improvement can be provided at the time of construction and would likely include further mechanical compaction effort and/or overexcavation and replacement with suitable structural fill.

Foundations

The proposed structures can be constructed on conventional continuous and spread footing foundations bearing on competent native soil, recompacted native soil, or new structural fill placed directly on competent native soil. Where loose or unsuitable soil conditions are encountered at foundation subgrade elevations, compaction of the soils to the specifications of structural fill, or overexcavation and replacement with suitable structural fill will likely be necessary. A representative of ESNW should confirm suitability of foundation subgrades at the time of construction. If deemed necessary, the undisturbed weathered native soils may be compacted in-situ provided the soil is at or slightly above the optimum moisture content.

Provided the structures will be supported as described above, the following parameters may be used for design of the new foundations:

•	Allowable soil bearing capacity	2,500 psf
---	---------------------------------	-----------

Passive earth pressure
 300 pcf

• Coefficient of friction 0.40

A one-third increase in the allowable soil bearing capacity can be assumed for short-term wind and seismic loading conditions. The passive earth pressure and coefficient of friction values include a safety factor of 1.5. With structural loading as expected, total settlement in the range of one inch is anticipated, with differential settlement of about one-half inch. The majority of the settlement should occur during construction as dead loads are applied.

Retaining Walls

Retaining walls must be designed to resist earth pressures and applicable surcharge loads. The following parameters may be used for retaining wall design:

•	Active earth pressure	(unrestrained condition)	35 pcf
---	-----------------------	--------------------------	--------

At-rest earth pressure (restrained condition)
 55 pcf

• Coefficient of friction 0.40

Seismic surcharge
 8H psf*

The passive earth pressure and coefficient of friction values include a safety factor of 1.5. Additional surcharge loading from adjacent foundations, sloped backfill, or other loads should be included in the retaining wall design.

Retaining walls should be backfilled with free-draining material that extends along the height of the wall and a distance of at least 18 inches behind the wall. Relatively clean (fines content less than 5 percent) native soils may be used as the drainage zone, but should be observed by ESNW prior to placement. The upper 12 inches of the wall backfill may consist of a less permeable soil, if desired.

[•] Traffic surcharge (passenger vehicles) 70 psf (rectangular distribution)

Passive earth pressure
 300 pcf

^{*} Where H equals the retained height (in feet).

Drainage should be provided behind retaining walls such that hydrostatic pressures do not develop. If drainage is not provided, hydrostatic pressures should be included in the wall design. A perforated drainpipe should be placed along the base of the wall and connected to an approved discharge location. A typical retaining wall drainage detail is provided on Plate 3.

Seismic Design

The 2018 International Building Code (2018 IBC) recognizes the most recent edition of the Minimum Design Loads for Buildings and Other Structures manual (ASCE 7-16) for seismic design, specifically with respect to earthquake loads. Based on the soil conditions encountered at the test pit locations, the parameters and values provided below are recommended for seismic design per the 2018 IBC.

Parameter	Value
Site Class	D*
Mapped short period spectral response acceleration, $S_S(g)$	1.280
Mapped 1-second period spectral response acceleration, $S_1(g)$	0.463
Short period site coefficient, Fa	1.000
Long period site coefficient, F _v	1.837
Adjusted short period spectral response acceleration, $S_{MS}\left(g\right)$	1.280
Adjusted 1-second period spectral response acceleration, $S_{M1}\left(g\right)$	0.850
Design short period spectral response acceleration, $S_{DS}\left(g\right)$	0.853
Design 1-second period spectral response acceleration, $S_{D1}\left(g\right)$	0.567

^{*} Assumes medium dense soil conditions, encountered to a maximum depth of 16 feet bgs during the April 2023 field exploration, remain medium dense or better to at least 100 feet bgs.

As indicated in the table footnote, several of the seismic design values provided above are dependent on the assumption that site-specific ground motion analysis (per Section 11.4.8 of ASCE 7-16) will not be required for the subject project. ESNW recommends the validity of this assumption be confirmed at the earliest available opportunity during the planning and early design stages of the project. Further discussion between the project structural engineer, the project owner (or their representative), and ESNW may be prudent to determine the possible impacts to the structural design due to increased earthquake load requirements under the 2018 IBC. ESNW can provide additional consulting services to aid with design efforts, including supplementary geotechnical and geophysical investigation, upon request.

Liquefaction is a phenomenon where saturated or loose soil suddenly loses internal strength and behaves as a fluid. This behavior is in response to increased pore water pressures resulting from an earthquake or another intense ground shaking. In our opinion, site susceptibility to liquefaction may be considered negligible. The absence of a shallow groundwater table and the coarse (gravel) gradation of the native soil were the primary bases for this opinion.

[†] Values assume F_v may be determined using linear interpolation per Table 11.4-2 in ASCE 7-16.

Slab-on-Grade Floors

Slab-on-grade floors should be supported on a firm and unyielding subgrade consisting of competent native soil or at least 12 inches of new structural fill. Unstable or yielding areas of the subgrade should be recompacted or overexcavated and replaced with suitable structural fill prior to slab construction.

A capillary break consisting of a minimum of four inches of free-draining crushed rock or gravel should be placed below the slab. The free-draining material should have a fines content of 5 percent or less defined as the percent passing the number 200 sieve, based on the minus three-quarters-inch fraction. In areas where slab moisture is undesirable, installation of a vapor barrier below the slab should be considered. The relatively clean (less than 5 percent fines) native gravel soils may be used or considered functionally equivalent as a capillary break; however, ESNW should observe native soils prior to placement to confirm suitability. If used, the vapor barrier should consist of a material specifically designed to function as a vapor barrier and should be installed in accordance with the manufacturer's specifications.

Drainage

Temporary measures to control surface water runoff and groundwater during construction would likely involve passive elements such as interceptor trenches, interceptor swales, and sumps. ESNW should be consulted during preliminary grading to identify areas of seepage and provide recommendations to reduce the potential for seepage-related instability.

Finish grades must be designed to direct surface drain water away from structures and slopes. Water must not be allowed to pond adjacent to structures or slopes. Based on the presence of relatively clean sand/gravel soils on this site, footing drains may be omitted at the owner's discretion. If footing drains are omitted, we recommend ESNW be contacted to observe the subgrade to ensure the entire alignment exposes relatively free-draining sand/gravel. If footing drains will be installed, a foundation drain should be installed along building perimeter footings. A typical foundation drain detail is provided on Plate 4.

Preliminary Infiltration Evaluation

As indicated on the referenced preliminary site plan, a stormwater tract will be created in each of the project areas. The Vancil Road plat will include a storm tract in the western portion of the site, while the Morris Road plat will include a storm tract in the eastern portion. ESNW excavated three test pits in each storm tract (TP-5 through TP-7 for Vancil Road and TP-11 through TP-13 for the Morris Road site). Native soils encountered across the site during our fieldwork were characterized primarily as recessional outwash gravel deposits with relatively low fines contents. Based on our laboratory analyses, the native soils classify primarily as USDA loamy sand with fines contents ranging from about 1.3 to 4.7 percent with one outlier (TP-6) with a fines content of 7.4 percent. The results of our laboratory analyses are included in Appendix B of this report.

Using Method 3 - Soil Grain Size Analysis Method, in conjunction with the presence of Type A soil on the subject site, we determined a preliminary long-term design infiltration rate to be used primarily as a feasibility screening tool. A preliminary long-term design rate is calculated following the equation below, located in the Pierce County Stormwater and Site Development Manual.

$$log_{10}(K_{sat}) = -1.57 + 1.90D_{10} + 0.015D_{60} - 0.013D_{90} - 2.08F_{fines}$$

The relatively clean Spanaway (Type A) gravels observed in across the site exhibit favorable infiltration characteristics and will likely be feasible for full infiltration. Based on the soil samples obtained at TP-5 through TP-7 and TP-11 through TP-13 within the vicinity of the proposed infiltration facilities at representative depths, preliminary calculated long-term design rates ranging between 7 inches/hour to 87 in/hr were calculated. We recommend using an allowable infiltration rate of 20 in/hr for the Vancil Road plat and 30 in/hr for preliminary sizing calculations/design for the proposed Morris Road stormwater facility. In-situ pilot infiltration testing should be completed for final design of the infiltration ponds.

Groundwater monitoring piezometers were installed at three test locations within each of the proposed stormwater tracts for future groundwater monitoring services, to be completed in the coming wet season. While no indications of seasonal groundwater were observed during the subsurface investigation, winter monitoring may result in alterations to future facility design based on potential groundwater conditions.

Based on our field observations and laboratory analyses, the native gravelly soils do not meet the requirements for water quality treatment per Volume V, Chapter 6.3 of the stormwater manual. Specifically, the measured soil infiltration rate significantly higher than the maximum allowable nine inches per hour. Additionally, the native Spanaway gravels likely possess a lower cation exchange capacity (CEC) and organic content than required by the manual. Therefore, a treatment layer or other provision will likely be required for facility designs.

Utility Support and Trench Backfill

In our opinion, the on-site soil will generally be suitable for support of utilities. Based on the conditions encountered at the exploration locations, groundwater seepage may be exposed within utility trench excavations and will likely require temporary shoring and construction dewatering. Use of the native soil as structural backfill in the utility trench excavations will depend on the in-situ moisture content at the time of placement and compaction. If native soil is placed below the optimum moisture content, settlement will likely occur once wet weather impacts the trenches. As such, backfill soils should be properly moisture conditioned, as necessary, to ensure acceptability of the soil moisture content at the time of placement and compaction. Large clasts greater than about six inches should be removed from utility trench backfill if encountered. Utility trench backfill should be placed and compacted to the specifications of structural fill provided in this report or to the applicable requirements of the presiding jurisdiction.

Preliminary Pavement Sections

The performance of site pavements is largely related to the condition of the underlying subgrade. To ensure adequate pavement performance, the subgrade should be in a firm and unyielding condition when subjected to proof rolling with a loaded dump truck. Structural fill in pavement areas should be compacted to the specifications previously detailed in this report. Soft, wet, or otherwise unsuitable or yielding subgrade conditions will require remedial measures, such as overexcavation and/or placement of thick crushed rock or structural fill sections, prior to pavement. Cement treated base may be considered for stabilizing the subgrade if local jurisdictions allow this method of treatment.

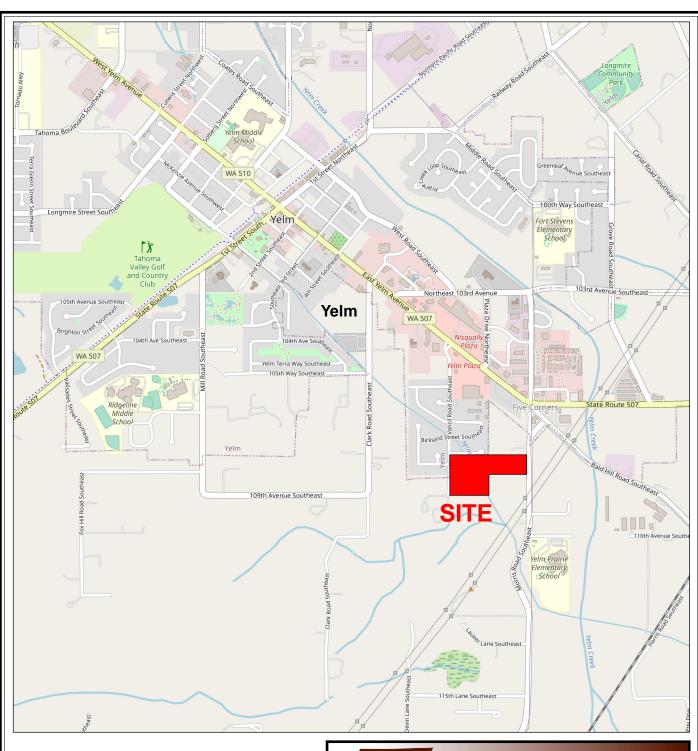
We anticipate new pavement sections will be subjected primarily to passenger vehicle traffic. For lightly loaded pavement areas subjected primarily to passenger vehicles, the following preliminary pavement sections may be considered:

- A minimum of two inches of hot-mix asphalt (HMA) placed over four inches of crushed rock base (CRB), or;
- A minimum of two inches of HMA placed over three inches of asphalt-treated base (ATB).

Heavier traffic areas generally require thicker pavement sections depending on site usage, pavement life expectancy, and site traffic. For preliminary design purposes, the following pavement sections for occasional truck traffic and access roadway areas may be considered:

- Three inches of HMA placed over six inches of CRB, or;
- Three inches of HMA placed over four and one-half inches of ATB.

A representative of ESNW should be requested to observe subgrade conditions prior to placement of CRB or ATB. As necessary, supplemental recommendations for achieving subgrade stability and drainage can be provided. If on-site roads will be constructed with an inverted crown, additional drainage measures may be recommended to assist in maintaining road subgrade and pavement stability.


Final pavement design recommendations, including recommendations for heavy traffic areas, access roads, and frontage improvement areas, can be provided once final traffic loading has been determined. Road standards utilized by the governing jurisdiction may supersede the recommendations provided in this report. The HMA, ATB, and CRB materials should conform to WSDOT specifications. All soil base material should be compacted to a relative compaction of 95 percent, based on the laboratory maximum dry density as determined by ASTM D1557.

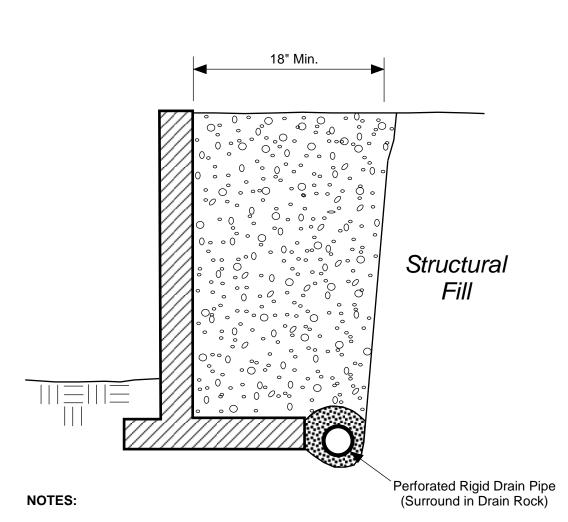
LIMITATIONS

This study has been prepared for the exclusive use of Copper Ridge, LLC, and its representatives. The recommendations and conclusions provided in this study are professional opinions consistent with the level of care and skill that is typical of other members in the profession currently practicing under similar conditions in this area. A warranty is neither expressed nor implied. Variations in the soil and groundwater conditions observed at the exploration locations may exist and may not become evident until construction. ESNW should reevaluate the conclusions provided in this study if variations are encountered.

Additional Services

ESNW should have an opportunity to review final project plans with respect to the geotechnical recommendations provided in this report. ESNW should also be retained to provide testing and consultation services as needed during future design and construction phases of the project.

Reference: Thurston County, Washington OpenStreetMap.org


NOTE: This plate may contain areas of color. ESNW cannot be responsible for any subsequent misinterpretation of the information resulting from black & white reproductions of this plate.

Vicinity Map 10800 Vancil Road S.E. Subdivision Thurston County (Yelm), Washington

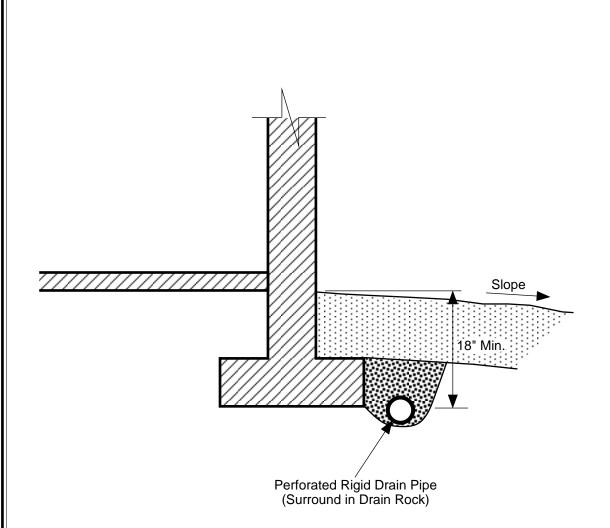
Drawn CAM	Date 06/06/2023	Proj. No.	9150
Checked SSR	Date June 2023	Plate	1

2

- Free-draining Backfill should consist of soil having less than 5 percent fines.
 Percent passing No. 4 sieve should be 25 to 75 percent.
- Sheet Drain may be feasible in lieu of Free-draining Backfill, per ESNW recommendations.
- Drain Pipe should consist of perforated, rigid PVC Pipe surrounded with 1-inch Drain Rock.

LEGEND:

Free-draining Structural Backfill


1-inch Drain Rock

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING

Retaining Wall Drainage Detail 10800 Vancil Road S.E. Subdivision Thurston County (Yelm), Washington

Drawn CAM	Date 06/06/2023	Proj. No.	9150
Checked SSR	Date June 2023	Plate	3

NOTES:

- Do NOT tie roof downspouts to Footing Drain.
- Surface Seal to consist of 12" of less permeable, suitable soil. Slope away from building.

LEGEND:

Surface Seal: native soil or other low-permeability material.

1-inch Drain Rock

SCHEMATIC ONLY - NOT TO SCALE NOT A CONSTRUCTION DRAWING

Footing Drain Detail 10800 Vancil Road S.E. Subdivision Thurston County (Yelm), Washington

Drawn CAM	Date 06/06/2023	Proj. No.	9150
Checked SSR	Date June 2023	Plate	4

Appendix A

Subsurface Exploration Test Pit Logs

ES-9150

Subsurface conditions on site were explored by excavating 18 test pits on April 24/25, 2023, respectively, using equipment and operators provided by the client. The approximate locations of the test pits and borings are illustrated on Plate 2 of this study. The subsurface exploration logs are provided in this Appendix. The maximum exploration depth was 16 feet bgs.

The final logs represent the interpretations of the field logs and the results of laboratory analyses. The stratification lines on the logs represent the approximate boundaries between soil types. In actuality, the transitions may be more gradual.

	Coarse Sieve	္က	GW	Well-graded gravel with or without sand, little to	Moisture	Content	Symbols
	₽4	0/110/g		no fines	Dry - Absence of m the touch	oisture, dusty, dry to	ATD = At time ✓ of drilling ATD = At time ✓ of drilling Bentonite
200 Sieve	50% on No.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	GP	Poorly graded gravel with or without sand, little to no fines	Damp - Perceptible optimum MC	moisture, likely below	Static water Very level (date) Grout
	Gravels - More Than 50% (Fraction Retained on No.		<u>)</u>	Silty gravel with or without	Moist - Damp but n at/near optimum M	o visible water, likely C	seal Filter pack with blank casing
	- More	Fines	GM	sand	likely above optimu		section Screened casing or Hydrotip with
Coarse-Grained Soils - More Than 50% Retained on No.	ravels -ractio	12%	GC	Clayey gravel with or without sand	Saturated/Water Be water, typically belo	earing - Visible free w groundwater table	filter pack
Coarse-Grained 50% Retained	IS F			without sand	Terms D	escribing Relative	e Density and Consistency
Gra			•	Well-graded sand with	Coarse-Graine	d Soils:	Test Symbols & Units
rse- % R	rse	8	SW	or without gravel, little to	<u>Density</u>	SPT blows/foot	Fines = Fines Content (%)
oal 50%	Coarse Sieve	5% Fine	•	no fines	Very Loose	< 4	MC = Moisture Content (%)
a C	ρ 4 Ο 8	2%		Poorly graded sand with	Loose	4 to 9	DD = Dry Density (pcf)
Ĕ	ē ō.	v	SP	or without gravel, little to	Medium Dense	10 to 29	
More	ands - 50% or More Fraction Passes No.			no fines	Dense Very Dense	30 to 49 ≥ 50	Str = Shear Strength (tsf) PID = Photoionization Detector (ppm)
	% c Pas	ပ္ခ	SM	Silty sand with or without		. "	,
	- 50 ion I	Fine	SIVI	gravel	Fine-Grained Consistency	Soils: SPT blows/foot	OC = Organic Content (%)
	Sands - Fracti	%////			Very Soft	< 2	CEC = Cation Exchange Capacity (meq/100 g)
	Sa	$\left \begin{array}{c} \\ \\ \end{array} \right / / / / /$	SC	Clayey sand with or without gravel	Soft	2 to 3	LL = Liquid Limit (%)
					Medium Stiff	4 to 7	PL = Plastic Limit (%)
	_			Silt with or without sand	Stiff	8 to 14	PI = Plasticity Index (%)
	0.50		ML	or gravel; sandy or	Very Stiff	15 to 29	
	ys			gravelly silt	Hard	≥ 30	
ve	ilts and Clays			Clay of low to medium plasticity; lean clay with		Componen	t Definitions
- 200 Sieve	and		CL	or without sand or gravel; sandy or gravelly lean clay	Descriptive Term	Size Range	e and Sieve Number
200			1	Saridy of graverry learn clay	Boulders	Larger than	า 12"
Soils No. 2	0, 5		OL	Organic clay or silt of	Cobbles	3" to 12"	
ned S	<u>.</u> _			low plasticity	Gravel Coarse Gravel Fine Gravel	3" to No. 4 3" to 3/4" 3/4" to No.	(4.75 mm) 4 (4.75 mm)
irai Pas		\Box		Elastic silt with or without	Sand		5 mm) to No. 200 (0.075 mm)
Fine-Grained 50% or More Passes	/S More		MH	sand or gravel; sandy or gravelly elastic silt	Coarse Sand Medium Sand Fine Sand	No. 10 (2.0	imm) to No. 10 (2.00 mm) 10 mm) to No. 40 (0.425 mm) 125 mm) to No. 200 (0.075 mm)
or N	Clay			Clay of high plasticity;	Silt and Clay	`	an No. 200 (0.075 mm)
20%	Silts and Clays		СН	fat clay with or without sand or gravel; sandy or gravelly fat clay		Modifier I	Definitions
	Silk				Percentage by Weight (Approx.)	Modifier	
	. <u>.</u>		ОН	Organic clay or silt of medium to high plasticity	< 5	Trace (san	d, silt, clay, gravel)
	υ	<u> </u>	3		5 to 14	Slightly (sa	ndy, silty, clayey, gravelly)
ghly	Organic Soils	717 717 717 71	PT	Peat, muck, and other	15 to 29	Sandy, silty	, clayey, gravelly
Ī	Š	77 7		highly organic soils	≥ 30	Very (sand	y, silty, clayey, gravelly)
	≣		FILL	Made Ground	field and/or laboratory obs plasticity estimates, and s	ervations, which include de hould not be construed to in tratory classification methor	as shown on the exploration logs are based on visual ensity/consistency, moisture condition, grain size, and mply field or laboratory testing unless presented hereinds of ASTM D2487 and D2488 were used as an System.

Earth Solutions NWLLC

Geotechnical Engineering, Construction Observation/Testing and Environmental Services

EXPLORATION LOG KEY

Earth Solutions NWuc

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-1

TADTED	4/24/23		COMPI	FD 4/24/23 GROUND ELEVATION 358 ff	PROJECT NAME 10800 Vancil Road S.E. Subdivision GROUND ELEVATION 358 ft		
XCAVATION CONTRACTOR Client Provided							
	TIONS FIEID	Grass		AFTER EXCAVATION			
SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION			
			12. 11/2	Dark brown TOPSOIL, roots to 12"			
		TPSL					
			11/1/2		356.5		
			60(1	Brown poorly graded GRAVEL with sand, medium dense, damp			
Ŋ GB	MC = 7.5		200	-probed 4"			
				-slight caving to BOH			
			0000				
Ŋ GB	MC = 8.3		[°\°]				
			10°C				
		GP					
			600				
			000				
			000				
			000				
Ŋ GB			[0()0]		343.0		
	MC = 7.6		Pa NI	Test pit terminated at 15.0 feet below existing grade due to caving. No groundwater	040.0		
				LIMITATIONS: Ground elevation (if listed) is approximate; the test location was not surveyed. Coordinates are approximate and based on the WGS84 datum. Do not rely on this test log as a standalone document. Refer to the text of the geotechnical report for a			
	SAMPLE TYPE CE CONF. GB GB GB	ATION CONTRACTOR _ D BY _SKH CE CONDITIONS _Field TESTS GB _ MC = 7.5	ATION CONTRACTOR Client P D BY SKH CE CONDITIONS Field Grass TESTS TPSL GB MC = 7.5 GB MC = 8.3 GP	ATION CONTRACTOR Client Provided D BY SKH CHECKED CE CONDITIONS Field Grass TESTS STORMARE TESTS TO THE TESTS TPSL TO THE TESTS TO THE T	Tests 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		

Earth Solutions NWLLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-2

DATE START	ED 4/24/23	c	OMPLETED	4/24/23 GROUND ELEVATION 358 ft	
	·			LATITUDE 46.9305 LONGITUDE122.59428	
				SSR GROUND WATER LEVEL:	
NOTES				$\overline{igspace}$ AT TIME OF EXCAVATION	
	ONDITIONS Field			AFTER EXCAVATION	
	Tield	Orabb		ATENDAYATION	
O DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
		TPSL	71 × 71	Dark brown TOPSOIL, roots to 12"	
4		52	1.0		357.0
				Brown well-graded GRAVEL with sand, medium dense, damp	
₩ GE	MC = 5.8			-slight caving to BOH, probed 3"	
(y Gi	S IVIC - 3.6			signt daving to Borr, probod o	
5 - - - 10	MC = 8.8 Fines = 3.8	- GW		[USDA Classification: extremely gravelly coarse SAND]	
				-becomes gray	
1					
∰ GE	MC = 7.1		14.0		344.0
	<u> </u>	_		Test pit terminated at 14.0 feet below existing grade due to caving. No groundwater encountered during excavation. Caving observed from 2.0 feet to BOH.	
				LIMITATIONS: Ground elevation (if listed) is approximate; the test location was not surveyed. Coordinates are approximate and based on the WGS84 datum. Do not rely on this test log as a standalone document. Refer to the text of the geotechnical report for a complete understanding of subsurface conditions.	

Earth Solutions NWLC

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-3

Earth Solutions NWLLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-4

ATE	STARTED	4/24/23	(COMPLET	4/24/23				
					LATITUDE 46.93021 LONGITUDE -122.59339	59339			
					BY SSR GROUND WATER LEVEL:				
	 S				$ar{ar{ar{ar{ar{ar{ar{ar{ar{ar{$				
URF/	ACE CONE	ITIONS Field			AFTER EXCAVATION				
(#) 0	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION				
0				12. 18. 12.	Dark brown TOPSOIL, roots to 12"				
			TPSL	1.0		360			
				600	Brown poorly graded GRAVEL with sand, medium dense, damp				
1	-0.1								
5	₩ GB	MC = 6.8			-moderate caving to BOH				
_				200	-probed 4"				
				60 d					
-				000					
_				609					
5				600					
				000					
-				[0,0,0]					
			GP	000					
-									
				000					
				00					
10				60					
-				200					
	00 OD			00 12.					
	™ GB	MC = 9.3	_/	[° U] 12.	Test pit terminated at 12.0 feet below existing grade due to caving. No groundwater	34			
					encountered during excavation. Caving observed from 2.0 feet to BOH.				
					LIMITATIONS: Ground elevation (if listed) is approximate; the test location was not surveyed. Coordinates are approximate and based on the WGS84 datum. Do not rely on this test log as a standalone document. Refer to the text of the geotechnical report for a complete understanding of subsurface conditions.				

Earth Solutions NWLLC

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-5

PROJI	ECT NUM	IBER ES-9150				PROJECT NAME _10800 Van	cil Road S.E. Subdivision	
DATE	STARTE	D 4/24/23				GROUND ELEVATION _357 ft		
EXCA	VATION (CONTRACTOR	Client P	Provided		LATITUDE _46.93001	LONGITUDE -122.59472	
					DBY SSR			
	_						AVATION	
SURFACE CONDITIONS Field Grass							ION _	
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCR	RIPTION	
				<u>z, /x</u> . <u>z,</u>	Dark brown T	TOPSOIL, roots to 12"		
_			TPSL	1				
				1.5	Prown poorly	graded GRAVEL with sand, medium	donos domo	355.5
				[0,0,0]	Brown poorly	graded GRAVEL With Sand, Medium	dense, damp	
	€ GB	MC = 6.8		000	-moderate ca	ving to BOH, probed 3"		
- +	<u> </u>	WO - 0.0	GP	$\Gamma \wedge \gamma$		g, p		
				60				
				609				
5				5.0				352.0
					Brown well-g	raded GRAVEL with sand, medium de	ense, damp to moist	
 10			GW					
	€ GB	MC = 8.1		13	.0 ruspa class	ification: ovtromoly gravally loamy con	area SANDI	344.0
		Fines = 4.7			Test pit termi	ification: extremely gravelly loamy coa inated at 13.0 feet below existing grad	le due to caving. Piezo installed. No	
					LIMITATIONS surveyed. Co this test log a			

Earth Solutions NW, LLC Earth Solutions 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

TEST PIT NUMBER TP-6 PAGE 1 OF 1

4	NWL	Fax: 42		449-4704				
PROJ	ECT NUM	BER ES-9150				PROJECT NAME 10800 Vancil F	Road S.E. Subdivision	
						GROUND ELEVATION 357 ft		
EXCA	VATION (CONTRACTOR	Client P	rovided		LATITUDE 46.93002	LONGITUDE122.59521	
LOGG	ED BY _	SKH	(CHECKED BY	SSR	GROUND WATER LEVEL:		
NOTE	s						TION	
SURF	ACE CON	DITIONS Field	Grass			AFTER EXCAVATION	l	
o DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPT	ΓΙΟΝ	
				7.7.	Dark brown TOPSO	IL, roots to 12"		
			TPSL	11. 11. 1				
				1.5	Brown poorly grade	d GRAVEL with sand, medium der	nse damp	355.5
				000	-probed 3"		,	
				%0 d				
	∰ GB	MC = 7.7		000	-slight caving to BO	H, probed 3"		
5 10			GP		Brown well-graded (GRAVEL with sand, medium dense	e, damp to moist	348.0
15	∰ GB	MC = 10.9 Fines = 7.4	SW- SM	15.0	[USDA Classification Test pit terminated a encountered during LIMITATIONS: Grous surveyed. Coordination this test log as a state of the coordination of the coordinati		ND] Piezo installed. No groundwater n 3.0 feet to BOH.	342.0

Earth Solutions NWLLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-7

Dark brown TOF	MATERIAL DESCRIPTION PSOIL, roots to 12" aded GRAVEL with sand, medium dense, damp	
Dark brown TOF 1.5 Brown poorly gra -probed 3"	GROUND WATER LEVEL: AT TIME OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION PSOIL, roots to 12" added GRAVEL with sand, medium dense, damp	
Dark brown TOF 1.5 Brown poorly gra -probed 3"	AT TIME OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION PSOIL, roots to 12" added GRAVEL with sand, medium dense, damp	
Dark brown TOF 1.5 Brown poorly gra -probed 3"	MATERIAL DESCRIPTION PSOIL, roots to 12" aded GRAVEL with sand, medium dense, damp	
Dark brown TOF 1.5 Brown poorly gra -probed 3"	MATERIAL DESCRIPTION PSOIL, roots to 12" aded GRAVEL with sand, medium dense, damp	
Dark brown TOF 1.5 Brown poorly gra -probed 3"	PSOIL, roots to 12" aded GRAVEL with sand, medium dense, damp	355.5
1.5 Brown poorly gra -probed 3"	aded GRAVEL with sand, medium dense, damp	355.5
Brown poorly gra		355.5
Brown poorly gra		355.5
-probed 3"		
o (\o)	THE POLI	
o (\o)	THE POLI	
-moderate caving		
$D \circ C$	y to BOH	
\sim \sim		
500		
· ()		
· (^o]		
00		
00		
,		
70 d		
$^{\circ}$		
)	otions outromoly grovelly loomy operas CANDI	343.0
[UODA Classifica		
groundwater end	countered during excavation. Caving observed from 3.0 feet to BOH.	
surveyed. Coord this test log as a	dinates are approximate and based on the WGS84 datum. Do not rely on standalone document. Refer to the text of the geotechnical report for a	
	[USDA Classific Test pit terminat groundwater end LIMITATIONS: 0 surveyed. Coon this test log as a	

Earth Solutions NWLLC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-8

UAIESIA	DTED AIDAIDS			PROJECT NAME 10800 Vancil Road S.E. Subdivision 4/24/23 GROUND ELEVATION 357 ft	
				LATITUDE 46.92922 LONGITUDE -122.59478	
				/ SSR GROUND WATER LEVEL:	
		id Grass		AFTER EXCAVATION	
O DEPTH (ft) (ft) SAMPLE TYPE	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
0			<u>1/2. X1 /2.</u>	Dark brown TOPSOIL, roots to 12"	
		TPS	Γ		
			1.5		355.5
4			[.0]	Brown poorly graded GRAVEL with sand, medium dense, damp	
SW.	GB MC = 7.4			-probed 3"	
	35 WO - 7.4		10/01	-slight caving to BOH	
1			$[\circ \bigcirc \circ]$		
5			000		
			[.0]		
4					
			00		
-					
			[° \ °]		
-		GP	000		
			[0/0]		
1			000		
10					
			Po 01		
4			600		
			601		
-					
			601		
-			600		
1			000		
15	MC = 8.5		15.0		342.0
	WIC - 0.3			Test pit terminated at 15.0 feet below existing grade due to caving. No groundwater encountered during excavation. Caving observed from 3.0 feet to BOH.	
				3	

Earth Solutions NWILC

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-9

					FTFD 4/24/23	PROJECT NAME 10800 Vancil Road S.E. Subdivision GROUND ELEVATION 358 ft			
						· · · · · · · · · · · · · · · · · · ·	LONGITUDE122.59398		
						GROUND WATER LEVEL:			
					CON CON				
		DITIONS TIEIU C	Jiass			AI TEN EXCAVATION			
0 (ff)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCR	IPTION		
				71 V . 71	Dark brown TOPS	OIL, roots to 18"			
			TPSL	1/ 1/1/					
				70.7				356.	
1	000	MO 0.0				led GRAVEL with silt and sand, m	nedium dense, damp		
}	[™] GB	MC = 8.0 Fines = 5.3		PATE	-probed 4" [USDA Classificat	ion: extremely gravelly loamy coa	arse SAND]		
-					-slight caving to B				
_				60					
5									
				PAT					
_			GP-	P. 18					
			GM	6215					
4				P. H.					
				6215					
-				54					
10				695					
10				15°41°					
				16					
7				10 PM					
				[3]					
1	-0-1			10 Mg	-becomes gray				
8	₩ GB	MC = 8.1		919	13.0			345.	
	`		_			d at 13.0 feet below existing grade g excavation. Caving observed fi			
					LIMITATIONS: Gr surveyed. Coordi this test log as a s	ound elevation (if listed) is approx nates are approximate and based			

Earth Solutions NWuc

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-10

DDO II		IDED 50.0450					DDO IECT NAME 40000 V	anail Dand C.E. Cubdinisian	
							GROUND ELEVATION 359		
					-			LONGITUDE122.59327	
							GROUND WATER LEVEL:		
								CAVATION	
		IDITIONS Field G						ATION	
			T						
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESC	CRIPTION	
0				1 1 _N . 1		Dark brown TOPSC	OIL, roots to 12"		
			TPSL	1/ 1/1/					
				70.7	1.5				357.5
						Brown poorly grade	d GRAVEL with sand, mediu	m dense, damp	
				200					
	™ GB	MC = 7.9	1	600		-slight caving to BO	H, probed 3"		
	V -		1	000					
				600					
5				000					
				600					
				000					
				600					
			GP	000					
			GP	603					
				000					
				600					
10				000					
10				000					
				600					
				000					
				000		-becomes gray			
				000					
	₩ GB			2000	13.5				345.5
	<u> </u>	MC = 7.9		101 \				ade due to caving. No groundwater	010.0
						_	excavation. Caving observe		
						surveyed. Coordinathis test log as a sta	ates are approximate and bas	proximate; the test location was not sed on the WGS84 datum. Do not rely on the text of the geotechnical report for a s.	

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-11

DDO I	FOT NUM	IDED 50.0450					DDO IFOT NAME 40000 V/cm sil F	Daniel C. E. Cultidininian	
						A/2A/22	GROUND ELEVATION 355 ft		
							LATITUDE 46.93071		
							GROUND WATER LEVEL:	EONGITOBE122.00000	
								TION	
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG			MATERIAL DESCRIPT	ΓΙΟΝ	
0	•,			<u>17</u> <u>7</u> 1 1 <u>2</u> .		Dark brown TOPSO	III roots to 18"		
			TPS	Γ // ×//		Dark blown 101 00	71L, 100t3 to 10		
				75.7	1.5				353.5
				600		Brown poorly grade	d GRAVEL with sand, medium der	nse, damp	
	I ano			000					
	∰ GB	MC = 9.1				-probed 3" -moderate caving to	S ROH		
				000		-moderate caving to	, 5011		
5				200					
				600					
				000					
				600					
				000					
				600					
_			GP	000					
				600					
				000					
10				600					
				000					
				600					
				000					
				600					
				000					
						-becomes gray			
				000		3 ,			
15	₩ GB	MC = 5.3		500	15.0	ILISDA Classification	n: extremely gravelly coarse SANE	ור	340.0
		Fines = 2.2				Test pit terminated	at 15.0 feet below existing grade dintered during excavation. Caving of	ue to caving. Piezo installed. No	
						LIMITATIONS: Gro surveyed. Coordin this test log as a st	und elevation (if listed) is approximates are approximate and based or		

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-12

	TED 4/24/22		COMDI ETER	9 4/24/23	
				LATITUDE 46.93049 LONGITUDE -122.59051	
				Y SSR GROUND WATER LEVEL:	
				AFTER EXCAVATION	
OEPTH (ft) (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION	
0			<u>12. 12. 12.</u>	Dark brown TOPSOIL, roots to 18"	
		TPSL	1/ 71/		
1			15		354.5
			60(1	Brown poorly graded GRAVEL with sand, medium dense, damp	001.0
₩ G	B MC = 7.0		00	-probed 3"	
-				-moderate caving to BOH	
10		GP			
∰ G	$\begin{array}{c c} B & MC = 6.0 \\ \hline & Fines = 3.5 \end{array}$	<i></i>	0 0 14.0	[USDA Classification: extremely gravelly loamy coarse SAND]	342.0
	Filles - 3.3	_		Test pit terminated at 14.0 feet below existing grade due to caving. Piezo installed. No groundwater encountered during excavation. Caving observed from 3.0 feet to BOH.	
				LIMITATIONS: Ground elevation (if listed) is approximate; the test location was not surveyed. Coordinates are approximate and based on the WGS84 datum. Do not rely on this test log as a standalone document. Refer to the text of the geotechnical report for a	

Earth Solutions NWuc

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-13

		IBER <u>ES-9150</u>		0014015			ancil Road S.E. Subdivision	
							ft	
					D BY SSR G		LONGITUDE 122.590/5	
	S				<u> </u>		CAVATION	
		IDITIONS Forest					ATION	
		<u> </u>	<u> </u>			7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESC	CRIPTION	
0	••			\(\frac{7}{2}\frac{1}{1}\times\(\frac{7}{1}\times\(Dark brown TOPSOII	roots to 18"		
			TPSI	1/ 1//	Daik blown 101 001	., 10013 10 10		
				1.	5			349.5
				600		GRAVEL with sand, mediu	ım dense, damp	
	-000		1					
	∰ GB	MC = 7.3	-		-probed 3"			
				200	-slight caving to BOH			
				600				
5								
				1000				
			GP	200				
				600				
				600				
				000				
10				000	10			341.0
10					Brown well-graded G	RAVEL with sand, medium	dense, damp to moist	341.0
			GW					
	W) 05							
15	∰ GB	MC = 4.8 Fines = 1.3	 	1		extremely gravelly SAND]		336.0
			,		Test pit terminated at groundwater encount	15.0 feet below existing gr ered during excavation. Ca	rade due to caving. Piezo installed. No aving observed from 3.5 feet to BOH.	
					surveyed. Coordinate this test log as a stan	es are approximate and bas	proximate; the test location was not sed on the WGS84 datum. Do not rely on the text of the geotechnical report for a sec.	

Earth Solutions NWuc

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-14

PROJ	ECT NUM	IBER ES-9150				PROJECT NAME 10800 Vano	cil Road S.E. Subdivision	
DATE	STARTE	D 4/25/23		COMPLE	TED 4/25/23	GROUND ELEVATION 355 ft		
EXCA	VATION	CONTRACTOR _C	lient F	Provided		LATITUDE 46.93064	LONGITUDE122.59146	
LOGG	ED BY	SKH		CHECKE	D BY SSR	GROUND WATER LEVEL:		
NOTE	s					$ar{oldsymbol{ol}oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}$	VATION	
SURF	ACE CON	IDITIONS Forest	Duff				ON	
O DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCR	IPTION	
				71 1/2	Dark brown TOPS	OIL, roots to 24"		
			TPS	L				
				1.5		000000		353.5
					Brown well-graded	GRAVEL with sand, medium de	ense, damp to moist	
	600 CD	MC = 0.0	-		-probed 3"			
	∰ GB	MC = 8.8	-		-moderate caving	to BOH		
					g			
5	₩ GB	MC = 5.2 Fines = 1.5			[USDA Classificati	on: extremely gravelly coarse SA	ND]	
 		111165 - 1.0	GW					
-	₩ GB							242.5
	GB GB	MC = 7.1		12		I at 12.5 feet below existing grade g excavation. Caving observed f	e due to caving. No groundwater rom 3.0 feet to BOH.	342.5
					surveyed. Coordir this test log as a s		ximate; the test location was not d on the WGS84 datum. Do not rely on the text of the geotechnical report for a	

GENERAL BH / TP / WELL - 9150.GPJ - GINT US.GDT - 6/6/23

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-15

DDO II	ECT NUM	IDED 50.0450				DDO IECT NAME 40000 Vanail Dood 9	P. F. Subdivision	
						PROJECT NAME 10800 Vancil Road S GROUND ELEVATION 356 ft	S.E. SUDDIVISION	
		·				LATITUDE _46.93019	LONGITUDE -122.59064	
						GROUND WATER LEVEL:		
		IDITIONS Fores				AFTER EXCAVATION		
O DEPTH	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRIPTION		
U				7. 1×. 7/	Dark brown TOPSO	IL, roots to 18"		
			TPSL	1/21/				
				1.5				354.5
	W					d GRAVEL with sand, medium dense, d	amp	
	∰ GB	MC = 10.6		000	-probed 3"			
				607	-moderate caving to	вон		
_				600				
5				000				
				600				
				000	-becomes gray			
				600	3 ,			
	₩ GB	MC = 8.5						
- 4								
			GP	600				
			GP					
10				000				
_				.00 .00				
				60				
				000				
				000				
- 1				000				
				00				
15				00				
	₩ GB			16.0				340.0
		MC = 9.8		, , ,	Test pit terminated a encountered during	at 16.0 feet below existing grade due to excavation. Caving observed from 3.5 f	caving. No groundwater feet to BOH.	3.3.0
					surveyed. Coordinathis test log as a sta	und elevation (if listed) is approximate; the sare approximate and based on the value and based on the value and of the text of ding of subsurface conditions.	NGS84 datum. Do not rely on	
ı								

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-16

EXCAVATION LOGGED BY _ NOTES	CONTRACTOR _C	Client P	rovided CHECKED E		AFTER EVOLULATION				
O DEPTH (ft) SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESC	CRIPTION			
5 GB	MC = 9.2 Fines = 4.3	GW	少少 少少 少少 2.0	Brown well-grade	SOIL, roots to 24" d GRAVEL with sand, medium der tion: extremely gravelly loamy coa				
- - - GB	MC = 7.4		14.0	encountered duri LIMITATIONS: G Coordinates are	approximate and based on the WG ment. Refer to the text of the geote	e due to caving. No groundwater rom 3.5 feet to BOH. dimate; the test location was not surveyed. iS84 datum. Do not rely on this test log as echnical report for a complete understandi			

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-17

EXCAVATION C LOGGED BY S NOTES SURFACE CON	CONTRACTOR C	Client P	rovided CHECKED B	GROUND ELEVATION LATITUDE 46.93064 LONGITUDE -122.59233
SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG	MATERIAL DESCRIPTION
5 GB	MC = 7.9	GP	2.0	Brown poorly graded GRAVEL with sand, medium dense, damp -probed 3" -moderate caving to BOH
GB	MC = 6.6		0 0	lest pit terminated at 12.0 feet below existing grade. No groundwater encountered during
				excavation. Caving observed from 3.5 feet to BOH. LIMITATIONS: Ground elevation (if listed) is approximate; the test location was not surveyed Coordinates are approximate and based on the WGS84 datum. Do not rely on this test log a standalone document. Refer to the text of the geotechnical report for a complete understand of subsurface conditions.

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

TEST PIT NUMBER TP-18

N CONTRACTOR _C _SKH	Client Provided CHECKED	GROUND ELEVATION 361 ft LATITUDE 46.93026 LONGITUDE -122.59252 BY SSR GROUND WATER LEVEL: AT TIME OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION	
SKH ONDITIONS Forest	Duff CHECKED CHECKED	BY SSR GROUND WATER LEVEL: AT TIME OF EXCAVATION AFTER EXCAVATION MATERIAL DESCRIPTION	
ONDITIONS Forest	U.S.C.S. U.S.C.S. GRAPHIC LOG	AFTER EXCAVATION MATERIAL DESCRIPTION	
DNDITIONS Forest	Duff O.S.C.S. GRAPHIC LOG LOG	MATERIAL DESCRIPTION	
	U.S.C.S. GRAPHIC LOG	MATERIAL DESCRIPTION	
TESTS	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		TOPO 011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	TPSL 44	Dark brown TOPSOIL, roots to 18"	
	1.5		359.5
		Brown poorly graded GRAVEL with sand, medium dense, damp	
		-probed 4"	
MC = 8.4	7 I₀ (\o	-probed 4	
	60	-slight caving to BOH	
	00		
	000		
	1 10 001		
	20		
	GP 000		
	20		
	[[0, \(\cdot \)]		
	60		
	000		
	60		
	000		
	1 10 01		
	000		
	000		
3	0 0 13.5		347.5
MC = 4.8		Test pit terminated at 13.5 feet below existing grade due to caving. No groundwater encountered during excavation. Caving observed from 3.5 feet to BOH.	
		surveyed. Coordinates are approximate and based on the WGS84 datum. Do not rely on	
	MC = 4.8	G	GP GP GP GO GO GO GO GO GO GO

Appendix B Laboratory Test Results ES-9150

Earth NWILE.

TP-06

TP-07

TP-09

•

16.0ft.

14.0ft.

2.0ft.

37.5

37.5

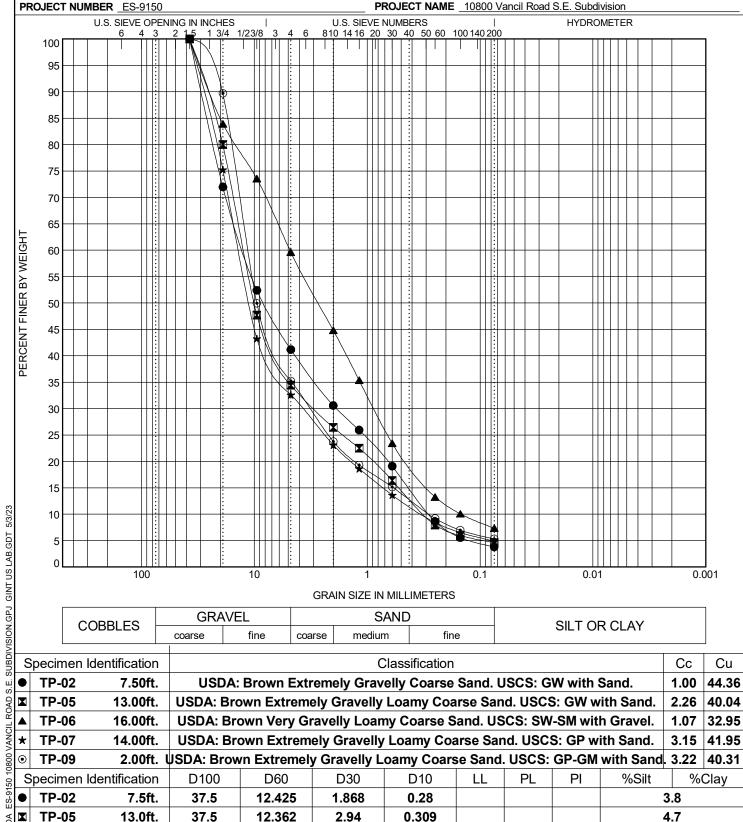
37.5

4.834

13.65

11.317

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711


GRAIN SIZE DISTRIBUTION

7.4

4.9

5.3

PROJECT NUMBER ES-9150

0.147

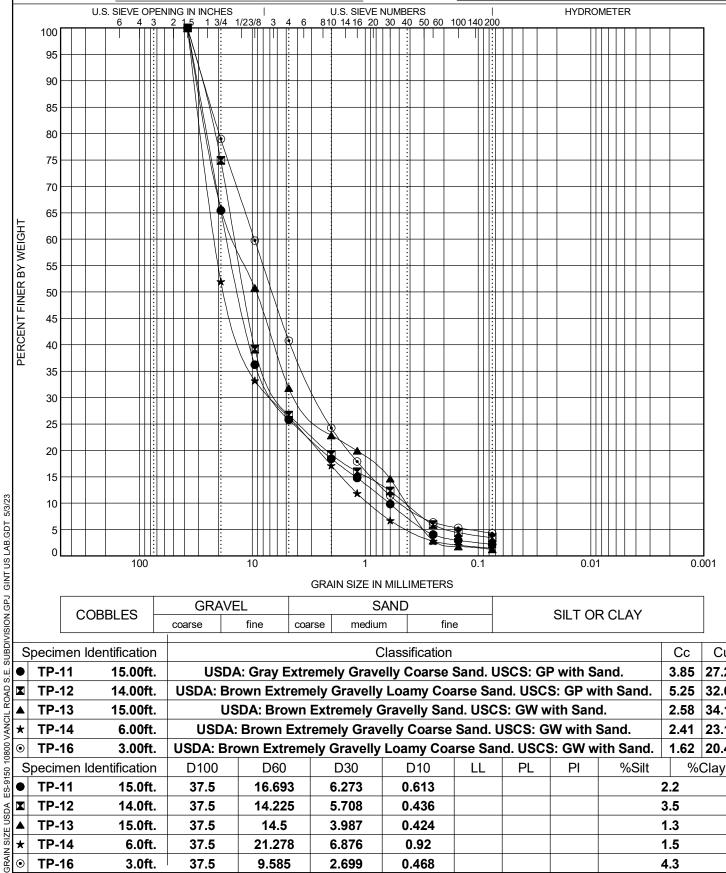
0.325

0.281

0.87

3.741

3.196


Earth Solutions NW_{LLC}

Earth Solutions NW, LLC 15365 N.E. 90th Street, Suite 100 Redmond, Washington 98052 Telephone: 425-449-4704 Fax: 425-449-4711

GRAIN SIZE DISTRIBUTION

PROJECT NUMBER ES-9150

PROJECT NAME 10800 Vancil Road S.E. Subdivision

21					1								
	Specimen	Identification				(Classification	1				Сс	Cu
اِ اِ	TP-11	15.00ft.	USI	USDA: Gray Extremely Gravelly Coarse Sand. USCS: GP with Sand.									
	TP-12	14.00ft.	USDA: E	Brown Ext	remely	Gravelly	Loamy Co	arse Sa	nd. USC	S: GP w	ith Sand.	5.25	32.63
▼	TP-13	15.00ft.	ι	USDA: Brown Extremely Gravelly Sand. USCS: GW with Sand.									34.17
*	TP-14	6.00ft.	USD	USDA: Brown Extremely Gravelly Coarse Sand. USCS: GW with Sand.								2.41	23.12
0	TP-16	3.00ft.	USDA: E	Brown Extr	remely	Gravelly	Loamy Coa	arse Sar	nd. USC	S: GW w	ith Sand.	1.62	20.48
	Specimen	Identification	D100	D60		D30	D10	LL	PL	PI	%Silt	%	Clay
	TP-11	15.0ft.	37.5	16.69	3	6.273	0.613					2.2	
5	TP-12	14.0ft.	37.5	14.22	5	5.708	0.436					3.5	
▼	TP-13	15.0ft.	37.5	37.5 14.5 3.987 0.424 1								1.3	
*	TP-14	6.0ft.	37.5	21.27	8	6.876	0.92					1.5	
0	TP-16	3.0ft.	37.5	9.58	5	2.699	0.468					4.3	

Report Distribution

ES-9150

Copper Ridge, LLC P.O. Box 73790 **EMAIL ONLY**

Puyallup, Washington 98373

Attention: Evan Mann